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1 Introduction

It seems clear that the present quantum mechanics is not in its final form. Some
further changes will be needed, just about as drastic as the changes made in pass-
ing from Bohr’s orbit theory to quantum mechanics. Some day a new quantum
mechanics, a relativistic one, will be discovered, in which we will not have these
infinities occurring at all. – Paul Dirac, in Albert Einstein : Historical and Cultural
Perspectives: The Centennial Symposium in Jerusalem, edited by Gerald James
Holton and Yehuda Elkana, 1979, p. 85.

Relativistic quantum field theory (RQFT) [7, 23, 24, 61] does not realize quantum mechanics
[8, 13, 60, 64]: RQFT does not include general state descriptions with relativistically invari-
ant transition likelihoods. If quantum mechanics suffices to describe nature, then either the
constructs that realize relativistic quantum physics (RQP) have resisted discovery, or there are
unnecessary considerations within RQFT that preclude physically nontrivial realization. Search
for an inconsistent assertion within RQFT identifies Hermiticitya of the quantum field as unnec-
essary and presumably unrealizable for interacting fields. Hermiticity together with selection of
eigenfunctions implements the quantum-classical correspondence of a canonical quantization.
To exhibit only real eigenvalues, operators must be Hermitian and if, upon measurement, a
system “collapses” to an eigenfunction that is a classical description, then corresponding oper-
ators must be Hermitian with eigenfunctions that are classical descriptionsb. This conjectured
quantum-classical correspondence elevatesc classical dynamical variables to quantum mechan-
ical operators. However, while classical dynamics must approximate “macroscopic” quantum
state descriptions, those perceived as classically described, a correspondence need not be ar-
bitrarily precise, and need not apply to every state. Indeed, no correspondence applies when
indistinguishability, entanglement, and particle production or annihilation are exhibited. Such
characterteristics are not classical. The assertion that field operators canonically quantize a

aThe Hermiticity of Hilbert space operators, A = A∗, is a technical assumption stronger than neces-
sary to realize the observed correspondences of classical with quantum dynamics. Hermitian fields satisfy
Φ(f) = Φ(f)∗ on a common dense domain. Fields Φ(f) consist of Nc component fields Φ(x)κ defined for

f = (f1(x), f2(x), . . . fNc(x)), x ∈ R4, by Φ(f) :=
∑

κ Φ(fκ)κ. Free fields are Hermitian, Φ(f)∗ = Φ(f∗) for
“real” function sequences f = f∗. The ∗-dual function sequences f∗ include an Nc × Nc linear transformation
D determined by a representation of the Lorentz group (8). However, Hermiticity does not generalize from free
to the physically nontrivial fields.

bClassical description for the observable that corresponds with the operator. The quantum state descriptions
include no classical state descriptions: the Heisenberg uncertainty principle depicts that both location and
momentum can not be specified in a quantum description.

cHere, a canonical quantization is also designated an elevation. Considering the quantum state descriptions as
functions over domains determined by the corresponding classical dynamical variables, the canonical quantization
of a classical dynamical variable is the Hilbert space operator implemented as multiplication of the state describing
function by an argument, e.g., Xψ(x) = xψ(x). Then, eigenfunctions of elevations are either Dirac or Kronecker
delta functions.
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classical field is an extrapolation of the “elevation of c-number to q-number” concept from
early, nonrelativistic quantum mechanics [13, 60].

Constructions are provided in these notes to demonstrate that physically nontrivial rela-
tivistic quantum physics is realizable. These realizations lack Hermitian fields when interaction
is exhibited. Nevertheless, with the exception of the Hermiticity of fields, constructions satisfy
the established principles of quantum mechanics and relativity [13, 61]. Justified by the lack of
Hermiticity, the constructions, section 3 and [31, 33, 35, 37], violate the Jost lemma. The Jost
lemma applies if fields are densely defined Hermitian operators and provides that a Pauli-Jordan
function can be the two-point vacuum expectation values (VEV) only for free quantum fields.
Pauli-Jordan function two-point VEV are included by the physically nontrivial examples.

Discussion emphasizes foundation principles for relativistic quantum physics, establishment
of example realizations, and a physical understanding of the development. Associated phe-
nomenology is relatively unexplored other than to establish connections with Feyman series
and classical dynamics. Primary references are Borchers’ [10] and Wightman’s [56, 64] develop-
ments of quantum field theory, Bogolubov, Logunov and Todorov’s review [9], and mathematical
background includes [3, 12, 19, 20, 21, 24, 27, 40, 46, 48, 60].

2 Realization of relativistic quantum physics

To satisfy observation, appropriate classical and quantum state descriptions must correspond
but a canonical quantization is not necessary, and for relativistic location, is not possible,
[43, 66] and appendix 6.4. A technically revised quantum-classical correspondence is realizable.
Relativistic location provides an archetype for realizable quantum-classical correspondences.
The canonical quantization of classical location is not Hermitian in relativistic physics: delta
functions are not eigenfunctions of a Hermitian operator in relativistic physics.d Elevations
X1, X2, X3 of location x ∈ R3,

Xν := −i d
dpν

,

dEigenfunctions of a Hermitian operator are necessarily orthogonal if they have distinct eigenvalues [3]. Dirac
delta functions are not orthogonal for a relativistic scalar product.∫

dxdy ∆+(x− y)δ(x− xo)δ(y − yo) = ∆+(xo − yo) ̸= 0

for xo ̸= yo with ∆+(x) a Källén-Lehmann form [9, 54]. There are elevations of the momentum operators,∫
dxdy ∆+(x− y)e−ip1xeip2y = (2π)4δ(p1 − p2)θ(E2)δ(p

2
2 −m2) = 0

if p1 ̸= p2 for the example of the Pauli-Jordan function. The eipx are inverse Fourier transforms of Dirac delta
functions over momenta.
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are distinct from the Hermitian relativistic location operatorse [43]

X̂ν := −i ω1/2 d

dpν
ω−1/2. (1)

The operators Xν and X̂ν are expressed in the Fourier transform, momentum domain and
ν = 1, 2, 3.f That the canonical quantization of location is not a Hermitian operator illustrates a
“localization problem” in RQFT. Nevertheless, the elevated location operators Xν conditionally
approximate the Hermitian operators X̂ν in the sense that the point support of eigenfunctions of
Xν are representatives for the support of the eigenfunctions of the Hermitian location operators
X̂ν , appendices 6.3 and 6.4. The non-Hermitian Xν approximate the Hermitian X̂ν if applied
to appropriate state descriptions. That is,

Xν ≈ X̂ν

when applied to functions dominantly supported on nonrelativistic momenta, those with

ℏ2p2 ≪ (mc)2

within the dominant support.g Relativistic location demonstrates that the presumed quantum-
classical correspondence of a canonical quantization imposes unrealizable constraints on rela-
tivistic quantum physics.

In relativistic quantum mechanics, nature is described by sequences of complex-valued func-
tions over three dimensional space and the evolution of these functions is parametrized by time

eThe Newton-Wigner location operators X̂ν canonically commute with the Hermitian elevations of momenta
and is Hermitian for the relativistic free field scalar product, appendix 6.3. From the Baker-Campbell-Hausdorff
relations, momentum generates spatial translations.

fSpacetime vectors x := (x0,x) with x0 = ct and spatial vectors x := x, y, z ∈ R3 are lengths, energy-
momenta are wavenumbers designated p := (p0,p) with momentum vectors P = ℏp ∈ R3, section 3.1.1. Energies
are E := ℏcp0 and ℏ is Planck’s constant h divided by 2π. c is the speed of light. Momentum vectors p have
components pν , ν = 1, 2, 3 and ω = ω(p) is the wavenumber proportional to an energy on the mass m shell.

ω :=
√
m2c2/ℏ2 + p2.

gFor example, in the L2(R3) norm,

∥(Xν − X̂ν)ψ∥
∥ψ∥ ≤ λ2

c√
8α

≪ λc

if λc ≪ α with α characterizing the extent of the spatial support and ℏ/α characterizing the extent of the
momentum support of ψ(x) = exp(−x2/(2α2)). λc is the Compton wavelength (14) for the finite mass m
particle. The condition λc ≪ α provides that the dominant support of ψ(x) is nonrelativistic. On appropriate
states, the expected values of Xν and X̂ν are nearly equal neglecting location differences small with respect to
the Compton wavelength.
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[9, 10]. The sequences of state describing functions over a 3+1 spacetime

f := (f0, f1(x1)1, . . . f1(x1)κ1 , . . . f2(x1, x2)κ1,κ2 , . . .)

label elements |f⟩ of a rigged (equipped) Hilbert space HP , [9, 10, 31, 33, 37, 56], section 3 and
appendix 6.2. Each xj ∈ R4, j, κj ∈ N, κj ∈ {1, Nc} with Nc the number of field components.

|f⟩ :=
∞∑
n=0

∑
(κ)n

∫
d(x)n fn((x)n)(κ)n

|
n∏
k=1

Φ(xk)κk
Ω⟩ (2)

with each of the (Nc)
n functions fn((x)n)(κ)n

∈ HP . f0 ∈ C and

(x)n := x1, x2 . . . xn ∈ R4n.

Spaces of functions P(R4n) are subspaces of the space of Schwartz tempered functions S(R4n)
[19] and there is a subspace P(κ)n

(R4n) determined for each

(κ)n = κ1, κ2 . . . κn ∈ Nn

that has a distinct sequence of masses mκ1 ,mκ2 , . . .mκn , section 3.7. Test function sequences
f ∈ P are dense in HP .

∏
k Φ(xk)κk

is a product of quantum fields implemented as a multipli-
cation f × g of function sequences, [10] and section 3.1.3.

∞∑
n=0

∑
(κ)n

∫
d(x)n fn((x)n)(κ)n

|
n∏
k=1

Φ(xk)κk
g⟩ := |f × g⟩. (3)

The ×-multiplication of function sequences is

f × g := (f0g0, . . . ,

n∑
ℓ=0

fℓ(x1, . . . xℓ)(κ)1,ℓ
gn−ℓ(xℓ+1, . . . xn)(κ)ℓ+1,n

, . . . ). (4)

The sequence
Ω = (1, 0, 0 . . .)

describes the vacuum and Ω is the identity for the ×-multiplication of sequences. In (2), the
quantum fields map

Ω ∈ P 7→ f ∈ P

from f × Ω = f . Notation is discussed further in section 3.1.
The vacuum expectation values (VEV) of the quantum fields

⟨Φ(xk)κk
. . .Φ(x1)κ1Ω|Φ(xk+1)κk+1

. . .Φ(xn)κnΩ⟩ ∈ S ′(R4n) (5)
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are generalized functions (distributions) in the dual to Schwartz tempered test functions S(R4n).
These VEV together with specification of the function sequences P ⊆ S determine the Hilbert
space realization for RQP. The scalar product in HP is

⟨f |g⟩ :=
∑
n,m

∑
(κ)n+m

∫
d(x)n+m ⟨Φ(x1)κ1 . . .Φ(xn)κnΩ|Φ(xn+1)κn+1 . . .Φ(xn+m)κn+mΩ⟩

×fn(x1, . . . xn)κ1...κn gm(xn+1, . . . xn+m)κn+1...κn+m

(6)

with formal summation notation for the generalized functions [19]. From Born’s rule, VEV
determine likelihoods. The |f⟩ ∈ HP are equivalence classes within the Hilbert space-norm
completion of terminating function sequences f ∈ P [9, 10, 12, 56]. HP includes elements
described by generalized functions with point support over time, functions used by Lehmann,
Symanzik and Zimmermann (LSZ) to describe scattering, [9] and section 3.9. Here, vacuum
expectation values (5) of quantum fields Φ(x)κ satisfy the principles of quantum mechanics
and relativity, described in axioms A.1-7 in section 3.2, without imposition of unnecessary
constraints from canonical quantization. The axioms revise the Wightman axioms [9, 10, 56, 62]
with additional considerations from RQFT [61].

Consistently with canonical quantization’s “elevation of c-number to q-number” correspon-
dence, satisfaction of the Wightman [56, 62] axioms provides that quantum fields are densely
defined Hermitian operators. The Wightman axioms require that the scalar product (6) sim-
plifies to

⟨f |g⟩ =W (f∗× g)

:=
∑
n,m

∑
(κ)n+m

∫
d(x)n+m ⟨Ω|Φ(x1)κ1 . . .Φ(xn+m)κn+mΩ⟩

×f∗
n(x1, . . . xn)κ1...κn gm(xn+1, . . . xn+m)κn+1...κn+m

(7)

with f × g the same product of function sequences as in the definition (3) of field [10]. The
∗-dual sequence f∗ ∈ S is the result of an argument order reversal, complex conjugation and a
linear transformation D determined by representation of the Lorentz group.

f̃∗
n((p)n)(κ)n

:= (DT ·)nf̃n(−pn, . . .− p1)κn...κ1 (8)

in matrix notation with (DT )ij := Dji ∈ C, f̃(p) is the Fourier transform (16) of f(x), z denotes
the complex conjugate of z ∈ C and

(D·)nV(κ)n+m
:=

Nc∑
ℓ1=1

Nc∑
ℓ2=1

. . .

Nc∑
ℓn=1

Dκ1ℓ1Dκ2ℓ2 . . . DκnℓnVℓ1...ℓnκn+1...κn+m . (9)

Example D are provided in sections 3.1.2, 3.3.1 and 3.3.2. W (f) is the Wightman functional
[9, 10, 56, 62]. However, despite concerted efforts, no physically nontrivial realization for W
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have been discovered and (7) is not satisfied by the constructions that exhibit interaction. The
property of VEV that satisfy (7) is designated formal Hermiticity below. To construct VEV
that exhibit interaction, the formal Hermiticity constraint is abandoned: physically trivial free
field VEV satisfy formal Hermiticity. The more general scalar product (6) is adopted for axiom
A.1-7 compliance. As a consequence, and consistently with the Haag (Haag-Hall-Wightman-
Greenberg) theorem [9, 56, 64], unitary similarity of interacting and free field operators is
abandoned. Although, as discussed below, RQFT developments persist as approximations to
the constructions.

Motivated by several concerns, quantum field operators that are not Hermitian operators
and revised quantum-classical correspondences are studied in this note. Concerns include:

1. Hermitian elevations may be inconsistent with relativity. Relativistic invariance of like-
lihoods implies that functions with point support are not eigenfunctions of a Hermitian
operator in RQP: due to relativity, there is no exact correspondence of location as a classi-
cal dynamical variable with an argument of state describing functions [43, 66]. However,
the physical relevance of RQFT suggests that an “approximate elevation” of location
suffices. This approximation applies conditionally

2. an exact, “collapse to an eigenfunction” that provides a classical description is stronger
than required by our observations. Conditional and approximate correspondences of clas-
sical and quantum state descriptions suffice. The stronger assertion underlies the elevation
of classical dynamical variable to densely defined Hermitian operator. It is neither possible
to prepare all of a dense set of natural states nor to verify that, for example, location cor-
responds precisely to one real number. If the eigenfunctions of corresponding Hermitian
operators are accurately represented to great likelihood by classical dynamical variables
in “macroscopic” instances, then a quantum-classical correspondence indiscernible from
exact is established

3. quantum fields do not necessarily have any eigenfunctions, section 3.1.3

4. a physically equivalent development for the established free quantum field lacks Hermitian
field operators [31]. This alternative construction demonstrates that Hermitian fields are
not necessary to realize relativistic quantum physics

5. there are realizations of RQP consistent with the principles of quantum mechanics and
relativity that lack Hermitian fields, [31, 33, 35, 37] and section 3. Constructed scattering
amplitudes approximate Feynman series scattering amplitudes, section 3.9 and [31, 35].
For the constructions with a single finite mass elementary particle, a short range, Yukawa-
like equivalent potential suggestive of nuclear forces is associated with scattered states in
first Born approximation [31, 33]; and long range −g/r pair potentials suggestive of New-
tonian gravity or electrostatics are associated with the evolution of significantly separated,
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classical body-like concentrations in the support of states in nonrelativistic approxima-
tions, section 4. Generally, one quantum dynamical construction exhibits multiple classi-
cal correspondences determined by properties of the state descriptions and fidelity of the
approximation.

Here, non-Hermitian “approximately elevating” quantum fields are considered. This departure
from earlier constructive efforts [2, 4, 9, 30, 39, 41, 56] results in the physically nontrivial re-
alizations of RQP. A revised understanding of the quantum description of relativistic physics,
sections 3.1 and 4, enables the realizations of RQP with quantum fields that only approximate
canonical quantizations of classical fields. In the revised understanding, the quantum-classical
correspondence is established by representing the support of quantum state describing func-
tions with classical dynamical variables. And, classical dynamical variables necessarily provide
accurate representatives for the quantum description of state only when support is isolated and
well represented by one location and one momentum. State descriptions with isolated support
well represented by one location and one momentum are designated here as “macroscopic.”
This approximate and conditional correspondence of classical and quantum state descriptions
substitutes for the elevations conjectured in canonical quantization. Elevations establish corre-
spondences of classical dynamic variables with the eigenfunctions of hypothesized densely de-
fined Hermitian operators; this exacting correspondence is contradicted by relativistic location.
The revision replaces this curious extrapolation with a more physically justifiable conditional
and approximate correspondence of state descriptions.

Physically nontrivial VEV include multiple argument connected contributions.

⟨Φ̃(p1) . . . Φ̃(pk)Ω| . . . Φ̃(pn)Ω⟩ = . . .+ cnδ(p1+p2+ . . .+pn)
n∏
j=1

δ(p2j−m2c2/ℏ2) (10)

in an example construction of a single neutral scalar field Φ(x), section 3.4 and [31, 33]. In
(10), Nc = 1, n ≥ 4, n − 2 ≥ k ≥ 2, the contributions of the less than n-point connected
functions are understood, and Φ̃(p) designates the Fourier transform (17) of Φ(x). VEV are
cluster expansions of connected functions, section 3.4.4. The selection of basis function spaces
P ⊂ S limits the states in HP to positive energies. The basis function spaces P are limited to
functions with Fourier transforms that vanish on appropriate negative energy mass shells: field
component κj is associated with mass mκj , section 3.7.

δ(p2j−m2
κj
c2/ℏ2)θ(−Ej)φ̃n((p)n)(κ)n

= 0 (11)

if φn ∈ P(R4n) with 1 ≤ j ≤ n. Except for an unobservableh phase difference between forward
and scattered contributions, the plane wave scattering amplitudes resulting from VEV such as

hUnobservable in the scattering limit, and RQFT methods do not provide estimates for finite transition
intervals.
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(10) coincide with first order terms from a Feynman-Dyson series [31, 33] with, in some exam-
ples, corrections at very relativistic exchange momenta (small distances) [35]. For the neutral
scalar field example (10), the scattering cross sections coincide with the first order contributions
from :P (Φ)4 : interactions. The phase difference between (10) and the Feynman-Dyson series
is necessary to the nonnegativity of the scalar product (6). Due to introduction of the sup-
port constraint, the algebra of function sequences P is not ∗-involutive and as a consequence,
the fields in (5) are not Hermitian Hilbert space operators if they exhibit interaction. With
interaction, the adjoints of the field operators are not Hilbert space operators, section 3.8. The
support constraint also implies that there are no states strictly limited to bounded spatial vol-
umes described by functions in HP [33]. Considered as functions over spacetime, functions
within P do not vanish within any finite spatial volume unless the function is identically zero:
such functions are designated anti-local [53]. Nevertheless, comparing summations over equal
finite volumes, anti-local functions include functions arbitrarily dominantly supported within
one finite spatial volume: such functions are designated essentially localized here, appendix 6.14.
The physically significant support of functions in P may be local, section 4.1. For the VEV
(10) to be generalized functions with massless particles, at least 3+1 dimensional spacetime is
necessary, section 3.5.5.

Equivalently, with VEV modified from formally Hermitian forms such as (10), the basis
function space includes all sequences of the Schwartz tempered functions S, section 3.7.2. S
includes dense sets of real functions with bounded support. If based upon S, then the VEV for
the neutral scalar field example (10) are the first order contributions from a Feynman-Dyson
series with a phase difference, appendix 6.8 and [31, 35],

⟨Φ̃(p1) . . . Φ̃(pk)Ω| . . . Φ̃(pn)Ω⟩ = . . .+ cnδ(p1+p2+ . . .+pn)
k∏
j=1

θ(−Ej)δ(p2j−m2c2/ℏ2)

×
n∏

ℓ=k+1

θ(Eℓ)δ(p
2
ℓ−m2c2/ℏ2).

These scalar field Feynman-Dyson series VEV truncated at first order satisfy A.1-7 but do not
satisfy the Wightman axioms [31]. These VEV do not satisfy formal Hermiticity. While the
algebra of basis test functions S is ∗-involutive, the variation of the VEV with k precludes
Hermiticity of the field operators in the VEV (5), section 3.8. The connection of developments
based on the energy support limited P and on S is the equivalence

ωj ± pj0
2ωj

= θ(±Ej) (12)

as multipliers of generalized functions supported solely on mass shells. The lefthand side is a
multiplier function [20] applicable to test functions and defines the function spaces P from S,
section 3.7, while the Heaviside functions θ(E) evidently limit the support of states to positive
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energies. The wavenumber

ωj := ω(pj) :=
√
λ−2
cj + p2

j (13)

and the reduced Compton wavelength for the mass mκj associated with a field component
Φ(xj)κj is

λcj :=
ℏ

mκjc
. (14)

The alternative RQP constructions present the same puzzlement as the Reeh-Schlieder theorem
from RQFT [45], section 3.7.2: although functions with local support can be considered to label
states in relativistic quantum physics, the spatial support of quantum fields is global.

Realization of relativistic quantum physics includes: a physical understanding of the state
descriptions |f⟩ ∈ HP (2); the VEV (5) that determine the scalar product (6); and the basis
space of test function sequences f ∈ P (11). Revisions to the Wightman axioms are the
prospective axioms for relativistic quantum physics. The physical conditions of the Wightman
axioms are preserved but the condition that implies densely defined Hermitian fields, formal
Hermiticity, is removed. The newly constructed VEV in section 3.4 satisfy axioms that include
additional revisions from [31, 33, 37], section 3.2. A stronger cluster decomposition property
than the uniqueness of the vacuum condition used in [31, 33, 37] provides that truncated
functions [9] are connected functions and this stronger condition is included as an axiom. The
stronger cluster decomposition condition: provides a replacement for formal Hermiticity in
demonstrations that the quantum fields (3) are (non-Hermitian) Hilbert space operators; implies
that states with sufficiently isolated and space-like separated support are described by free
particles; provides the essential independence of the local observables of non-entangled, spatially
distant bodies; and implies a unique vacuum.

3 Constructions of relativistic quantum mechanics

In dealing with mathematical problems, specialization plays, as I believe, a still more
important part than generalization. Perhaps in most cases where we seek in vain the
answer to a question, the cause of the failure lies in the fact that problems simpler
and easier than the one in hand have been either not at all or incompletely solved.
All depends, then, on finding out these easier problems, and on solving them by
means of devices as perfect as possible and of concepts capable of generalization. –
David Hilbert, in Bulletin of the American Mathematical Society 8 (1902), 437-479.

In current understanding, the natural world is described by quantum mechanics. In quantum
mechanics, bodies are described by complex-valued functions over three dimensional space.
The evolution of these functions is parametrized by time. The resulting functions over a 3+1
spacetime label elements of the rigged (equipped) Hilbert space introduced in section 2. The
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evolution of states, likelihoods of observations, quantum-classical correspondences and prop-
erties of the field derive from the choice of vacuum expectation values (VEV) for products of
the field and the choice of basis function spaces [9, 10, 31, 33, 37, 56]. The VEV specify the
scalar product ⟨f |g⟩ of Hilbert space elements |f⟩, |g⟩ ∈ HP including limits of elements from
the basis space of function sequences P.

Example VEV (5) and spaces of function sequences P (11) that realize relativistic quan-
tum physics are constructed in this section. The VEV generalize the single neutral scalar field
example (10) introduced in section 2. The constructions exhibit properties of nontrivial rela-
tivistic physics with multiple component quantum fields Φ(x)κ. In section 3.1, rigged Hilbert
space realizations of quantum physics are discussed, and prospective axioms characterizing the
constructions are presented in section 3.2. The VEV of the relativistic free fields are discussed
in the current context in section 3.3.1 and appendix 6.9. The VEV are constructed as cluster
expansions of symmetric, connected functions. Symmetric, connected functions are constructed
and the cluster expansion defined in section 3.4. Satisfaction of the axioms is demonstrated in
sections 3.5.1-3.5.5. In section 3.7, the basis spaces P that provide nonnegativity of energies
(11) are presented, and the equivalence with constructions based on S demonstrated. The
construction is summarized and the Hamiltonian operator evaluated in section 3.5.6. The con-
structions are developed further in sections 3.8-3.9, section 4 and the appendices. The scattering
amplitudes are illustrated in section 3.9.

In the designations of appendix 6.1, quantum mechanics is described by Dirac-von Neumann
axioms I-III. Dirac-von Neumann axioms IV and V describe the canonical quantization of
nonrelativistic physics. In the constructions, satisfaction of axioms I-III is maintained in A.1-
7, IV remains true for location and momentum but not for fields, and V does not apply.
In relativistic physics, the quantum-classical correspondence described in axioms IV and V is
replaced with a more appropriate correspondence for relativistic physics. The adopted quantum-
classical correspondence compares classical and quantum state descriptions. The technically
relaxed correspondences derives from Erwin Schrödinger’s 1926 study of the linear harmonic
oscillator [49] and the generalization from Paul Ehrenfest [14, 42]: classical dynamical variables
are representatives for the support of appropriate state describing functions. Appropriate state
describing functions are discussed in sections 2 and 4. The most classical-like states are as nearly
well represented by classical dynamical variables as possible: the Heisenberg uncertainty lower
bound is satisfied. Nature is described by equivalence classes of functions and the physically
significant features of these functions are Lebesgue summations over measurable subsets of
R3. A correspondence of Lebesgue measurable subsets with points x or p ∈ R3 is necessarily
inexact. This adopted quantum-classical correspondence is suited to relativity and results in
decisive revision to the mathematical development of RQP.

From (12), there are two equivalent approaches to the constuctions: constrained functions P
and VEV with support on negative energies; and unconstrained functions S with VEV appro-
priately constrained to positive energies. The approach based upon the constrained functions
P is emphasized here.
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3.1 Quantum mechanical description of state

Key considerations for realization of relativistic quantum physics include:

1. functions are the description of nature. Functions over spacetime and quantum numbers
label elements of rigged Hilbert spaces, and the Fourier transforms of these functions
describe momenta

2. the Hamiltonian generates time translation. To comply with relativity, the Hamiltonian
must be a generator of a Hilbert space realization of the Poincaré group.

In the classical concept, observables are classical dynamical variables. The classical concept
includes an observer who can describe the evolution of each identifiable body. The description
of state is considered independently of observation, or perhaps more precisely, the state is con-
sidered determined and observation need not disturb that state. This geometric description
with an omniscient observer is what is meant by classical physics in these notes. Quantum me-
chanics supersedes, not “quantizes,” classical descriptions. A description of nature as elements
of rigged Hilbert spaces manifests the wave-particle duality, and implements the discrete line
spectra of atomic emissions, the quantized energy of photons, the entanglement of states nec-
essary to consistent description of quantized conserved quantities, and the indistinguishability
of similarly described bodies that results in an extensive entropy. The quantum description is
fundamentally contradictory to classical concepts. Nevertheless, when the dominant supports
of state describing functions are well represented by a single location and momentum, and
isolated, the description provided by the state describing function is classical body-like. For
these particular state descriptions, there is a close correspondence of quantum and classical de-
scriptions, section 4. More generally, description is inherently quantum mechanical. For widely
supported states, or significantly overlapping descriptions, or when entanglement applies, or
when non-commuting observables are considered, or on small spatial scales, or for relativistic
collisions, classical description is contradicted. For finite mass particles, the scale for “small” is
generally set by the Compton wavelength (14). Trajectories for distinguishable bodies apply in
quantum mechanics only while a correspondence with classical bodies applies. The Heisenberg
uncertainty principle is characteristic of the description of nature. The description of state
precludes classical description; states of nature are never classically described despite the famil-
iar and useful classical approximations. The instrinsic understanding of quantum mechanics is
the relative state (Everett-Wheeler-Graham) interpretation, [11] and appendix 6.2.7. The re-
sulting description of observation explains how common perceptions of nature differ from their
description, and resolves the Einstein-Podolosky-Rosen (EPR) [16], Schrödinger’s cat [51] and
Wigner’s friend [65] paradoxes associated with earlier understandings of quantum mechanics.
Quantum mechanics contradicts classical description and in this sense the concepts are discon-
certing. But, quantum mechanics is necessitated by consistency with nature. The classical view
is not supported by our broadened observations of nature.
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The description of nature by functions is the result of an extraordinary effort to rectify
observation with prediction begun in the early twentieth century. The initial effort is notably
due to Max Planck, Albert Einstein, Max Born, Werner Heisenberg, Erwin Schrödinger, Paul
Dirac, Wolfgang Pauli, Pascual Jordan, Enrico Fermi, Neils Bohr, Hermann Weyl, John von
Neumann and Eugene Wigner, and efforts to understand the resulting formalism of quantum
mechanics are notably due to Hugh Everett III, Bryce DeWitt and J.A. Wheeler. The corre-
spondence of classical and quantum descriptions of nature is discused further in section 4. The
classical description is a perception facilitated by often excellent approximation.

3.1.1 States

The sequences of functions that describe nature are elements of a rigged Hilbert space. These
functions can depict the vacuum, a single body, multiple bodies, waves or unparticle-like [25]
states. Perceptions of these states by observers and the temporal evolution of states are the
concerns of mechanics. This Hilbert space description fulfills essential properties of nature
[13, 60]. Hilbert spaces are discussed in appendix 6.2.

The elements |f⟩ of the equipped or rigged Hilbert spaces of interest HP are within the
completion of elements described by terminating sequences of multiple argument functions
from the basis function spaces P [9, 10, 12, 56].

|f⟩ ∈ HP

is described by any one of an equivalence class of function sequences

f := (f0, f1(x1)1, f1(x1)2, . . . f1(x1)Nc , . . . fn((x)n)(κ)n
, . . .) (15)

with

1. f0 ∈ C the component of the state in the vacuum state characterized by the sequence

Ω := (1, 0, 0 . . .)

2. Nc functions f1(x)κ that describe single particle states with masses mκ, κ ∈ {1, 2, . . . Nc}

3. for n ≥ 2, there are (Nc)
n functions fn((x)n)(κ)n

,

fn((x)n)1...11, fn((x)n)1...12, . . . fn((x)n)NcNc...Nc

in the n-argument subspace. Generally, fn((x)n)(κ)n
is not interpretable as describing

any determined number or species of particles. Nevertheless, the functions fn((x)n)(κ)n
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describe n-particles in the absence of significant interaction, for example, if the supporti

of each argument is distantly space-like isolated from the support of any other state
describing function argument, or the momentum support is nonrelativistic.

Each natural number κj ∈ {1, 2, . . . Nc} labels one of Nc field components. The basis function
spaces P are subspaces of the space of terminating sequences of Schwartz tempered functions
S. P ⊂ S provides that S ′ ⊆ P ′ for the duals [20] but for the constructions, the constructed
VEV lie within S ′.

The labels on arguments do not identify particular bodies. Gibb’s paradox is resolved by
the indistinguishability of similarly described bodies. If the spatial supports of each argument
of the state describing functions fn((x)n)(κ)n

has the same mass, charge and polarization, and
overlap, the results of observation of a body are not reliably associated with the support of a
single argument. Unless the support of an argument of the state describing function is isolated
to great likelihood, a distinguished particle can not be reliably associated with the support of
a state describing function argument. Isolation of support enables association of a particular
particle description and volume of space, with the volume of space and support of an argument.
Indistinguishability is implemented in symmetry of the squared magnitude of the scalar product
with interchange of argument labels. If xj − xk is space-like in the support of fn((x)n)(κ)n

,
then the state described by f(. . . xj , xk, . . .)(κ)n

is equivalent to the state described by either
±f(. . . xk, xj , . . .)(κ)n

.j A quantum-classical correspondence is conditioned on the properties of
a state description.

In relativistic physics when interaction is manifest, particle number is not conserved and
states with different numbers of particles are generally not orthogonal in the constructed scalar
products. With interaction and if n ≥ 2, an n-argument function is not generally associated with
any fixed number of bodies k ≥ 2. But even with interaction, there are states well represented
as n classical particles. For free field VEV and functions fn ∈ HP(R4n), an n-argument function
describes an n-particle state [31]. But, more generally, since scalar products of functions with
different numbers of arguments do not vanish, there are nonzero likelihoods of observing k ̸= n
particles and distinct particle species for a state described by an n-argument function. With
the exceptions of the vacuum (n = 0) and functions of a single argument (n = 1), functions
with n arguments are generally not orthogonal to k ̸= n argument functions for the physically
nontrivial scalar products.

iThe support of a function is usually defined as the set of points in the domain where the function is not zero.
Here, the dominant support of a function refers to finite volumes within the domain that include the dominant
contribution to a norm of the function. Norms include the Hilbert space and L2 norms. The norms are truncated
to finite volumes to assess dominant support. Then, the support of a function includes Lebesgue measureable
sets of points in the domain where the finite volume contribution to the norm is not negligible. Comparing
equal finite volumes, a function has more support in volumes with greater norm. Localized designates that the
dominant support is primarily within one finite volume. The radius of an enclosing sphere characterizes the size
of the support. Relatively negligible norms within finite volumes are taken as zero to apply the usual definition
of function support. Generalized functions exhibit both regular and singular support [19].

jFor brevity, the possibility of parastatistics [9] is not included here.
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To describe momentum, functions in the basis function spaces P are required to have Fourier
transforms. f̃n((p)n) denotes the Fourier transform of fn((x)n). The Fourier transform adopted
here applies in four dimensional spacetime and is the evident multiple argument extension of

ψ̃(p) :=

∫
dx

(2π)2
e−ipxψ(x) (16)

using wavenumber p, energy-momentum P := ℏp, E = cP0 and the Lorentz invariants px =
p0ct − p · x and spacetime volume element dx = dx0dx1dx2dx3. ℏ is Planck’s constant h
divided by 2π. To describe relativity, spacetime coordinates in four dimensions are designated
x := (ct,x) and energy-momentum vectors are p := (E/(ℏc),p) and p := (px,py,pz). c is the
speed of light and px is without units. Px = ℏpx := Et−P·x. x, p ∈ R4 are Lorentz four-vectors
and x,p ∈ R3 are three dimensional Euclidean vectors. x2 := (ct)2 − x2, p2 := (E/c)2 − p2

use the Minkowski signature. p · x is the dot product and x2 := x · x is the squared Euclidean
length. The units of spacetime coordinates are length, and wavenumbers p have the units of
inverse length. Mass m is in natural units and a relevant length associated with a mass m is
the reduced Compton wavelength λc from (14). The Fourier transforms of generalized functions
are defined [19] to satisfy Parseval’s equality

T̃ (ψ̃) := T (ψ). (17)

As a consequence and when applicable, the Fourier transforms of generalized functions are

T̃ (p) =

∫
dx

(2π)2
eipxT (x)

with the sign reversal of the exponent in the exponential function relative to (16). The Fourier
transform is invertible [48].

ψ(x) =

∫
dp

(2π)2
eipxψ̃(p).

Among the properties of Fourier transforms are the Fourier transform pairs

ψ(Λ(x− a)) ↔ e−ipaψ̃(Λp)

dψ(x)

dx
↔ igpψ̃(p)

e−α∥x∥2 ↔ 1

4α2
e−∥p∥2/(4α)

(18)

with ∥x∥2 the Euclidean (sum of squares) length squared of the Lorentz four-vector x, for a
Lorentz transformation Λ, spacetime translation a, and complex α with ℜe(α) > 0. g is the
Minkowski signature,

gp = (p0,−p). (19)
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The third property in (18) suggests that functions ψ(x) with broad spacetime support have
Fourier transforms with concentrated energy-momentum support, and vice versa. Indeed, in
general, the standard errors of |ψ(x)|2 in spacetime and of |ψ̃(p)|2 in energy-momenta considered
as probability distributions satisfy σxσp ≥ 1

2 in each dimension. σxσp ≥ 1
2 illustrates the

Heisenberg uncertainty principle discussed in appendix 6.7. More precise knowledge of the
location of a body implies degraded knowledge of the time rate of change of the location, and
this effect is more pronounced for low mass bodies than for heavy bodies due to ℏp = P ≈ mv
at nonrelativistic velocities v. Then

σxσv ≥
ℏ
2m

in each of the three dimensions.

3.1.2 The scalar product

The Hilbert spaces of interest have a scalar product ⟨f |g⟩ ∈ C for every pair of elements
|f⟩, |g⟩ ∈ HP described by function sequences f, g. The scalar product provides the norm,

∥f∥ :=
√
⟨f |f⟩. (20)

To achieve Poincaré invariance of likelihoods and limit the support of states to nonnegative
energies, the degenerate scalar product uses generalized functions Wk,n−k((x)n)(κ)n

∈ S ′(R4n)
[20]. This degenerate scalar product is

⟨f |g⟩ :=W(f∗, g)

:=
∑
n,m

∑
(κ)n+m

Wn,m(f
∗
n,(κ)n

gm,(κ)n+1,n+m
)(κ)n+m

=
∑
n,m

∑
(κ)n+m

∫
d(x)n+m (D·)nWn,m((x)n+m)(κ)n+m

×fn(xn, . . . x1)κn...κ1 gm(xn+1, . . . xn+m)(κ)n+1,n+m

(21)

with formal summation notation for generalized functions [19] in the last line. Each spacetime
Lorentz vector xk is summed over R4 and each κj ∈ N is summed from 1 to Nc, the number of
field components. The indices n and m are summed over the nonnegative integers, {0,∞}. The
VEV functions Wk,n−k((x)n)(κ)n

generalize the Wightman functions [9, 10, 56, 62]. Multiple
arguments are denoted

(x)j,k := xj , xj+1, . . . xk ∈ R4(k−j+1)

in the ascending case, (x)j,k := xj , xj−1, . . . xk otherwise and (x)n := (x)1,n. The ∗-dual f∗ of
a function sequence f uses complex conjugation, argument transpositions, and the nonsingular
Nc ×Nc linear transformation D from (8). The ∗-dual functions are

f∗
n((x)n)(κ)n

:= (DT ·)nfn(xn, . . . x1)κn...κ1
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using the matrix notation (9) and then the Fourier transformk of f∗
n((x)n)(κ)n

is (8). D, desig-
nated here as Dirac conjugation, is determined by representation of the Lorentz subgroup and
satisfies

DD = INc (22)

with INc the Nc ×Nc identity and as a consequence, the ∗-dual satisfies

f∗∗ = f

(g × f)∗ = f∗ × g∗.

The linear space of function sequences P becomes an algebra with the×-product (4). The ∗-dual
is an involution of the algebra of function sequences when it is an automorphism. The ∗-dual
maps S 7→ S but, the ∗-dual is not an automorphism for the P selected in the constructions:
P∗ ̸= P due to a nonnegativity constraint on the energy support of the elements of P(R4n).
From the representation of the ∗-dual (8), P ∪ P∗ ⊂ S but P ∩ P∗ = {cΩ} with c ∈ R and Ω
the vacuum. Discussed in sections 2 and 3.7, the elements of P(R4n) have zeros on the negative
energy mass shells and the ∗-dual maps these zeros to positive energy mass shells.

The notation ⟨fn|gm⟩ is used for a scalar product when the constituent functions fj = 0 for
j ̸= n and gk = 0 when k ̸= m in the function sequences f and g.

⟨fn|gm⟩ :=
∑
(κ)n+m

∫
d(x)n+m (D·)nWn,m((x)n+m)(κ)n+m

×fn(xn, . . . x1)κn...κ1 gm(xn+1, . . . xn+m)(κ)n+1,n+m
.

(23)

The sequence of generalized functions is denoted

W := (1,W1,0,W0,1, . . . ,Wn,0,Wn−1,1 . . . ,W0,n, . . .). (24)

The arguments of Wk,n−k are (x)n, (κ)n and similarly to (15), there are (Nc)
n functions in the

subsequence Wk,n−k distinguished by n. Each κj ∈ {1, Nc} and j ∈ {1, n}. The n arguments
of Wk,n−k are designated as k ∗-dual function and n− k function arguments.

The scalar product of HP results from the isometry

⟨f |g⟩ =W(f∗, g)

that associates elements of the Hilbert space with equivalence classes of function sequences [12].
Then the norm (20) is

∥f∥ = (W(f∗, f))1/2.

k
∫
dx e−ipxψ(x) =

∫
dx eipxψ(x) = ψ̃(−p).
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3.1.3 The quantum field and VEV

The quantum field derives from the expression (6) for scalar product. This definition determines
the VEV functions Wk,n−k((x)n)(κ)n

in the scalar product (21) from the VEV of the fields (6).
The quantum field is multiplication (4) in the algebra of function sequences. Hans-Jürgen

Borchers [10] definition is
Φ(f) g := f × g (25)

with f, g ∈ HP but in this note, the discussion of Φ(f) is limited to single argument functions
f1 from sequences f . Then, the quantum field consists of Nc field components Φ(x)κ

Φ(f) :=

Nc∑
κ=1

Φ(fκ)κ

=

Nc∑
κ=1

∫
dx Φ(x)κf1(x)κ.

with field component Φ(x)κ associated with mass mκ. Comparison of the scalar products (6)
and (21) identifies

(D·)kWk,n−k((x)n)(κ)n
:= ⟨Φ(xk)κk

. . .Φ(x1)κ1Ω|Φ(xk+1)κk+1
. . .Φ(xn)κnΩ⟩ (26)

in the matrix notation (9). The definition (25) of quantum field produces (2) with states
described by state describing function sequences (15).

If the multiplication (4) preserves Hilbert space norm-equivalence classes of function se-
quences, then the definition of field as multiplication of function sequences (25) elevates to
Hilbert space operators. In Wightman’s development [10, 56, 62], the basis function spaces
are the ∗-algebra of tempered functions S (totality W.b in section 3.2). Then, g∗ × h ∈ S for
g, h ∈ S and if the scalar product satisfies formal Hermiticity (Wk,n−k = Wn independently of
k, W.a in section 3.2), then the Cauchy-Schwarz-Bunyakovsky inequality demonstrates that the
field (25) preserves equivalence classes. But, neither a ∗-involutive algebra of function sequences
nor formal Hermiticity are necessary to realize relativistic quantum physics. The ∗-dual (8) is
not an involution of the algebra P used in this development, section 3.7 and [33, 37], and if the
constructions are based on the ∗-algebra S, then the constructed physically nontrivial VEV are
not formally Hermitian. Nevertheless, the constructed quantum fields are unbounded Hilbert
space operators, section 3.8.

There are no eigenfunctions of the quantum field (25). An eigenstate would be labeled by
a sequence (15) of generalized functions e such that

Φ(f) e = λ e.
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For the case Nc = 1 and no vacuum polarization,

Φ(f)(e0, e1, e2, e3 . . .) = (0, f, 0, . . .)× (e0, e1, e2, e3 . . .)

= (0, fe0, fe1, fe2 . . .)

= (λe0, λe1, λe2, λe3 . . .)

from (4) and (25). If e describes an eigenstate of Φ(f) with a finite eigenvalue λ, then λe−f×e
is a sequence in the null space of HP . Selection of the sequence of zeroes to represent λe−f ×e
results in the recursive λen+1 = fen. Then λe0 = 0 with λ ̸= 0 provides that e = 0.

3.1.4 Likelihoods: Born’s rule

A separable Hilbert space has a denumerable basis of orthonormal elements designated |eν⟩
here [3, 40]. These elements provide a resolution of the identity operator in HP ,

I =
∑
ν

Qν

with projection operators
Qν := |eν⟩⟨eν |

in bra-ket notation. Then the expansion of any state in this selected basis is

|f⟩ =
∑
ν

⟨eν |f⟩ |eν⟩.

The projection operators Qν are the elementary propositions [6, 60] of measurement and for
normalized states ∥f∥ = 1, the squared magnitudes |⟨eν |f⟩|2 of the coefficients are the likeli-
hoods that proposition ν is answered affirmatively. The elementary propositions are the queries
“will the state described by f be perceived as the state described by eν .” This identification of
likelihoods is Born’s rule.

Born’s rule provides that the likelihood of observing the state described by |g⟩ after inter-
action with a state initially described by |ψ⟩ is the squared magnitude of the scalar product,

likelihood := |⟨g|ψ⟩|2 ≤ 1

for normalized state descriptions, ∥g∥ = ∥ψ∥ = 1. Born’s rule requires no additional assump-
tions for the forms or properties of operators to evaluate likelihoods: a scalar product and the
description (15) of states |f⟩ are inherent to the Hilbert space.
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3.2 Axioms for the VEV of relativistic fields

Early study of mathematical structures that might realize relativistic quantum physics includes
studies by John von Neumann, Rudolf Haag, Res Jost, Arthur Wightman, Léon van Hove,
Nikolay Bogolubov, Hans-Jürgen Borchers, Huzihiro Araki and Raphael Høegh-Krohn. Early
studies did not identify structures that demonstrably realize nontrivial relativistic quantum
physics [7, 8, 9]. Methods include the proposal of axioms to characterize general properties
of relativistic quantum physics. Axioms are used to define concepts, derive general results,
and assess the consistency of the axioms with additional assumptions. Significantly, the only
realizations discovered for the established prospective axioms are physically trivial. Established
axioms for relativistic quantum physics include the Wightman functional analytic axioms [9,
10, 56, 62], the G̊arding-Wightman axioms for field operators [9, 56, 63], and the Haag-Kastler
(Araki-Haag-Kastler) algebraic axioms for bounded, local Hermitian operators [9, 66, 67]. These
axioms all consider Hilbert space realizations in addition to Fock space but the realizations
that have been constructed do not exhibit interaction. The realizations of relativistic quantum
physics in section 3.4 and [31, 33, 37] satisfy a revision to the Wightman axioms that preserves
the physical characteristics and relaxes technical properties motivated by compliance with the
canonical formalism. The realizations also satisfy the Haag-Kastler axioms.

From Born’s rule, the scalar products of function sequences determine state transition like-
lihoods and these likelihoods exhibit physical properties. The scalar product (21) is determined
by the VEV (26). Seven prospective axioms adapted from the Wightman functional analytic
axioms [9, 10, 56, 62] and RQFT [61] characterize the constructions of relativistic quantum
physics.

A.1) Regularity: the vacuum expectation values (VEV) of quantum fields are generalized func-
tions dual to the Schwartz tempered functions S. The VEV satisfy axioms A.2-7 in a
subspace P ⊆ S.

A.2) Positive definiteness: the state describing functions are elements of a Hilbert space HP .
VEV define (21) a degenerate scalar product W(g∗, f), W(f∗, f) ≥ 0, for sequences of
state describing functions g, f ∈ P. The ∗-dual sequence (8) of every function sequence
f ∈ P is within S.

A.3) Relativistic invariance: transition likelihoods are the same for all inertial observers. The
degenerate scalar product (21) is invariant to proper orthochronous Poincaré transforma-
tions of the function sequences.

A.4) Spectral support: energy-momenta lie within the closed forward (nonnegative energy)
cone.

A.5) Local commutativity: field values are independent if not causally related and similarly
described particles are indistinguishable. The magnitudes of scalar products are invariant
with interchange of arguments of function sequences f if supports are space-like separated.
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A.6) Cluster decomposition: transition amplitudes for non-entangled, distantly space-like sep-
arated state descriptions are independent. The degenerate scalar product for functions
supported on distantly space-like separated volumes factors,

W(g1
∗ × g2∗, f1 × f2) 7→ W(g1

∗, f1)W(g2
∗, f2), (27)

as the supports of g1, f1 become arbitrarily distantly space-like separated from the sup-
ports of g2, f2.

A.7) Elemental stability: Without vacuum polarization, the vacuum and one particle states
are orthogonal to multiple argument states. ⟨g|Ω⟩ = 0 and ⟨g|Φ(f)Ω⟩ = 0 if g ∈ P with
g0 = g1(x)κ = 0, κ ∈ {1, Nc}.

The notation is developed in section 3.1 and [10]. Axioms A.2-6 are designated here as the
physical conditions [31]. Regularity and positive definiteness imply that states are realized as
elements of a rigged Hilbert space and satisfaction of the physical conditions applies in the
Hilbert space HP based on function sequences P.

Given generalized functions Un,m that satisfy A.1-6, generalized functions Wn,m that also
satisfy A.7 follow from

W(f∗, f) := |f0|2 +W1,1(f
∗
1 , f1) + U((f−Sf)∗, f−Sf) (28)

with the shortened sequence Sf := (f0, f1(x)κ, 0, 0, . . .) a projection of f . W1,1 is a free field two-
point function. In (28), the vacuum polarizations are set to zero without loss of generality: finite
vacuum polarizations are implemented in section 3.4.5. The decoupling of the contributions
from the n ≥ 4 argument VEV in U from the two-point function of W illustrates that with the
revised axioms, a two-point function equal to the free field two-point function no longer implies
that the quantum field is a free field. Without densely defined Hermitian field operators, that
is, without VEV that satisfy the additional constraints of formal Hermiticity W.a and totality
W.b introduced below, the Jost lemma [9, 56] does not apply to the constructions. If the field
in (5) is Hermitian, densely defined and satisfies A.1-5, then VEV contributions such as (10)
and (28) are precluded.

Using Born’s rule, all inertial observers perceive the same likelihood of events if the scalar
products are invariant to Poincaré transformations.

⟨(a,Λ)g|(a,Λ)f⟩ = ⟨g|f⟩, (29)

for Poincaré transformations

(a,Λ)fn((x)n)(κ)n
:= (S(A)T ·)nfn((Λ−1(x− a))n)(κ)n

(a,Λ)f̃n((p)n)(κ)n
=

n∏
k=1

e−ipka (S(A)T ·)nf̃n((Λ−1p)n)(κ)n

(30)
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from the Fourier transform (16) with properties (18), with the matrix notation (9) and with
S(A) an Nc×Nc realization of the proper orthochronous Lorentz group. A ∈ SL(2,C), Λ is the
proper orthochronous Lorentz transformation determined by A, and a ∈ R4 is a translation in
spacetime. The 4× 4 Λ has components

Λjk =
1

2
Trace(σjAσkA

†) (31)

with σj designating one of the four Pauli spin matrices [9]. ΛT gΛ = g with g the Minkowski
signature matrix (19). In a nonrelativistic development, time is a universal parameter and many
Hamiltonians are compatible with the nonrelativistic scalar product [52] while in relativistic
physics, time translations of states, and hence, the Hamiltonian, must comply with Poincaré
invariance of likelihoods.

With the Fourier transform (16) and Poincaré transformations (30), time translations by λ
are

f̃n((p)n)(κ)n
→

n∏
j=1

e−ipj0λ f̃n((p)n)(κ)n

in the n-argument subspace of the momentum domain. Time translation advances the argument
of the field positively in time, and as a consequence, the support of functions translate oppositely
in time. ∫

dx Φ(x)f(x0 − λ,x) =
∫
dx Φ(x0 + λ,x)f(x).

Poincaré invariance provides that temporal translation is unitarily implemented,

U(λ)f((x)n)(κ)n
:= f((x0 − λ,x)n)(κ)n

. (32)

From the Fourier transform (16) with properties (18),

e−ip·yf̃(p0,p− q) (33)

is the inverse Fourier transform of

eiq·(x−y)f(x0,x− y). (34)

The support for the function in (33) is translated from f(x) in space by y ∈ R3 and in momen-
tum by q ∈ R3.

A.4 follows from the observation that energy-momenta Lorentz vectors lie within the closed
forward cone

V
+
:= {p : p2 ≥ 0 and p0 ≥ 0}.

If |p⟩ is a generalized eigenstate of momentum with eigenvalue p, then for any state describing
function gk of k arguments,

⟨gk|p⟩ = 0
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if p ̸= V
+
. As a consequence, Fourier transforms of the generalized functions

T̃n((p)n)(κ)n
:= W̃k,n−k((p)n)(κ)n

g̃∗
k((p)k)(κ)k

f̃n−k((p)k+1,n)(κ)k+1,n
(35)

are limited to E+n [9, 10, 56, 62]. Wk,n−k((x)n)(κ)n
are the VEV functions (26), gk ∈ P(R4k),

fn−k ∈ P(R4n−4k) and

E+n := {(p)n : pn ∈ V
+
, pn−1 + pn ∈ V

+
, . . . , p2 + . . . pn ∈ V

+
, p1 + p2 + . . . pn = 0}. (36)

The support limitation follows from spectral theory for rigged Hilbert space operators (theorem
1, appendix to section 4 [21], lemma 5.6.7 [40], chapters 7-10 [24]). The unitary spacetime
translation operator in HP is

U(a) =

∫
dE(p) e−ipa

with
dE(p) ∼ dp |p⟩⟨p|

a resolution of the identity in HP . Every p ∈ V
+
. Unitarity of U(a) follows from Poincaré

invariance A.3 of the scalar product and Hermiticity of the densely defined generators of trans-
lations, the energy-momentum, appendix 6.3, follows from Stone’s theorem. Translations of the
fields are

U(a)Φ(xj)κjU(a)−1 = Φ(xj + a)κj ,

and the vacuum is translation invariant.

U(a)Ω = Ω.

Then, translation of arguments ℓ though n is expressed

⟨Φk . . .Φ1Ω|Φk+1 . . .Φℓ−1U(a)ΦℓU(a)−1 . . . U(a)ΦnU(a)−1Ω⟩
= ⟨Φk . . .Φ1Ω|Φk+1 . . .Φℓ−1U(a)Φℓ . . .ΦnΩ⟩

with an abbreviated notation for fields Φj := Φ(xj)κj . The scalar product (6) with functions
gn−k of translated support for arguments ℓ through n provides

F (q) :=

∫
da eiqa

∫
d(x)n ⟨Φk . . .Φ1Ω|Φk+1 . . .Φℓ−1U(a)Φℓ . . .ΦnΩ⟩ fkgn−k

=

∫
da

∫
d(x)n

∫
eiqa−ipa⟨Φk . . .Φ1Ω|Φk+1 . . .Φℓ−1dE(p)Φℓ . . .ΦnΩ⟩ fkfn−k

= (2π)4
∫
d(x)n

∫
δ(q − p) ⟨Φk . . .Φ1Ω|Φk+1 . . .Φℓ−1dE(p)Φℓ . . .ΦnΩ⟩ fkgn−k

= 0



3 CONSTRUCTIONS OF RELATIVISTIC QUANTUM MECHANICS 26

if q ̸∈ V
+

for each choice of n, k, ℓ and (κ)n. From the equivalent expression (21) for scalar
product, Parseval’s equality (17) and the properties of Fourier transforms (18),

F (q) :=

∫
da eiqa

∫
d(x)n Wk,n−k((x)ℓ−1, (x+ a)ℓ,n)(κ)n

f∗
kgn−k

=

∫
da

∫
d(p)n e

iqa−i
∑n

j=ℓ pja W̃k,n−k((p)n)(κ)n
f̃∗
k g̃n−k

= (2π)4
∫
d(p)n δ(q −

∑n
j=ℓ pj) W̃k,n−k((p)n)(κ)n

f̃∗
k g̃n−k.

Then, F (q) = 0 unless
n∑
j=ℓ

pj ∈ V
+

implies that the support of (35) includes only pj from E+n (36). Development follows similarly
for ℓ ≤ k from the sesquilinearity of the scalar product (6). As a consequence, to satisfy
the observation that all energy-momentum lie in the closed forward cone, the support of (35)
includes only pj from E+n .

In Wightman’s original axioms, the support of the functions f̃k, g̃n−k were not constrained
and as a consequence, the support of the VEV functions W̃k,n−k((p)n)(κ)n

was limited to E+n .
The supports of the constructed VEV are limited to mass shells and the supports of elements
of P(R4n) are limited to positive energies. Together, the joint support of VEV functions and
functions in P eliminates the negative energy mass shells and satisfies A.4 [33]. This devel-
opment enables joint satisfaction of locality, positive energy support and Poincaré covariance,
an unmet and apparently unattainable task within RQFT developments when interaction is
manifest [4, 9, 31, 41]. Satisfaction of the physical conditions in a more constrained function
space (or equivalently, with VEV that do not satisfy formal Hermiticity) results in the con-
structed physically nontrivial, locally commutative, positive energy, Poincaré covariant tem-
pered distribution-valued quantum fields.

Local commutativity is that linear combinations of VEV with transpositions of arguments
conditionally vanish.

⟨f |Φ1 . . . (ΦkΦk+1 ± Φk+1Φk) . . .ΦnΩ⟩ = 0

if the points xk and xk+1 are space-like, (xk−xk+1)
2 < 0, 1 ≤ k < n, and the notation is abbre-

viated, Φk := Φ(xk)κk
. Space-like separations specify that the values of the quantum field are

not causally related. The sign is determined by particle statistics to satisfy normal commutation
relations [9]. Verification of local commutativity uses functions of bounded support with space-
like separated support, for example, tempered test functions S. The function spaces P ⊂ S lack
functions of bounded support and the constructed VEV exhibit unconditional signed symmetry
for functions in P, section 3.4 and [31, 33]. For the realizations constructed in these notes, A.5
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can be tightened to unconditional signed symmetry of VEV but to include free field develop-
ments with the basis function spaces extended to S, only conditional local commutativity is
required in A.5 [31]. Inclusion of parastatistics [9] would extend this development.

Condition A.6 is another manifestation of causality: great spatial separation implies inde-
pendence of the local observables of nonentangled subsystems. A.6 is stronger than the condition
used in [31, 33, 37] that was also designated as cluster decomposition. Earlier constructions in
[31, 33, 37] satisfy formal Hermiticity described below. However, in section 3.4 it is illustrated
that formal Hermiticity conflicts with cluster decomposition A.6 in constructions with nonzero
spin and in some scalar field examples. Both conditions, A.6 or the cluster decomposition con-
dition used in [31, 33, 37], imply that the vacuum is the sole translation-invariant state. In
common with Wightman’s development, formal Hermiticity was maintained in [37] and resulted
in truncated functions that are not connected. In the earlier development that satisfied formal
Hermiticity, the strong cluster decomposition condition A.6 is not satisfied. The constructions
in section 3.4 abandon formal Hermiticity to establish the causal cluster decomposition property
A.6. Cluster decomposition is a nonlinear condition and relates the description of interaction
across orders of the VEV.

Condition A.6 implies that: the vacuum |Ω⟩ is the only translationally invariant state [33,
56]; that states with sufficiently isolated and space-like separated support are described by free
particles, section 3.6; that the quantum field (25) elevates to Hilbert space operators, section
3.8; and the essential independence of the local observables of non-entangled, spatially distant
bodies, appendices 6.2.7 and 6.2.8.

For the statement of A.7 and in the example constructions, mean values of field components,
vacuum polarizations, ⟨Ω|Φ(x)κΩ⟩, are asserted to vanish without loss of generality. Mean
values of the boson field components are independently specified constants. Nonzero mean
values are introduced in section 3.4.5.

Condition A.7 provides an interpretation of states as free particles in appropriate instances
and results in satisfaction of regularity A.1. Condition A.7 together with A.6 and the selected
two-point functions provide that isolated and localized volumes of support of the state describing
functions are perceived as classical particles. This associates the quantum field with elementary
particles. Sufficiently isolated concentrations of support propagate as nearly free particles. The
masses of the elementary particles are the mκ associated with each field component Φ(x)κ in
the construction in section 3.4. A.7 provides satisfaction of positive definiteness A.2 together
with regularity A.1 for the constructions. However, satisfaction of A.7 is not necessary for
regularity. Regularity and nonnegativity require thatW0,n(f

∗
0 , fn) =W1,n(f

∗
1 , fn) = 0 for n ≥ 2

in the constructions, section 3.5.5. Satisfaction of formal Hermiticity precludes setting W0,n =
W1,n = 0 for n ≥ 2 but kinematic constraints can result in W0,n(f

∗
0 , fn) = W1,n(f

∗
1 , fn) = 0 if

f1 ∈ HP(R4) and fn ∈ HP(R4n) for nonzero W0,n and W1,n. Kinematic constraints include
conservation of energy-momentum and spin. For the realizations with only a single mass,
W0,n(f

∗
0 , fn) =W1,n(f

∗
1 , fn) = 0 if n ≥ 2 due to conservation of energy-momentum: neither the

vacuum nor a single particle can create a cascade of particles with each particle of the same
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mass as the decaying particle.
Confined particles, those that do not appear with their support isolated from the support

of other arguments, have W1,1 = 0 for the κj included in their description. A |f0|2 term
(W0,0 = 1) is required in any construction that includes a vacuum state. Elemental stability
A.7 expresses that if a state is prepared with only one elementary particle, or together with A.6
that if one elementary particle is greatly isolated from the support of every other body, then the
elementary particle is stable until it encounters another body. Whether or which elementary
particles are confined is not determined by the axiom and a discussion of confinement awaits
better understanding of bound states within the constructions. Confined species extends this
development.

Wightman’s original axioms [9, 10, 56, 62] are distinguished here by two additional condi-
tions.l Wightman’s axioms support the canonical formalism’s conjectured correspondence that
quantizes classical fields to Hermitian quantum field operators, Wightman’s prospective axioms
include assumptions that imply the fields in the VEV (5) are Hermitian Hilbert space field
operators:

W.a) Formal Hermiticity: the generalized functions that define the degenerate scalar product
(21) satisfy

Wk,n−k((x)n))(κ)n
=Wn((x)n))(κ)n

independently of k. In this case, the degenerate scalar product is

W(g∗, f) =W (g∗ × f)

for a Wightman functional W and the product (4).

W.b) Totality: P = S. Satisfaction of the axioms applies for all sequences of Schwartz tempered
functions.

Together with A.1-2, satisfaction of W.a and W.b implies that the field is realized as Hermi-
tian Hilbert space operators. Condition W.a results in the simplified form (7) for the scalar
product. Sequences of tempered functions S are a ∗-algebra for the product (4) and involution
(8). However, satisfaction of both conditions W.a-b preclude the constructed nontrivial realiza-
tions of relativistic quantum physics. Physically trivial examples, free fields, Wick polynomials
and generalized free fields, satisfy both W.a and W.b. Either, but not both W.a and W.b
can be satisfied by the physically nontrivial constructions in section 3.4. In section 3.7.2, it
is demonstrated that W.b can be satisfied if W.a is abandoned: with a non-Hermitian embel-
lishment to the VEV presented in section 3.4, the constructions can be based on S. In [31],
it is demonstrated that W.a can be satisfied for a physically nontrivial neutral scalar field if

lThe conditions are not called out separately as axioms but formal Hermiticity and totality are assumed
within a statement of the axioms [9, 10, 56, 62].
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W.b is abandoned. The departure from satisfaction of W.a-b admits the physically nontrivial
constructions.

The revised axioms for RQP result in substantial departures from established RQFT results:
without densely defined Hermitian field operators, “no go” theorems such as “no simple two-
point functions” from Jost-Schroer and Greenberg [9] and “no nontrivial, infinitely divisible
descriptions” from Rinke [47] no longer apply; and there are no states of strictly bounded
support described by the energy support constrained functions in P [33, 45, 53] although P
includes states that are arbitrarily dominantly supported in bounded volumes, appendix 6.14.
The RQFT demonstrations of PCT and spin-statistics theorems [9, 56] require review to include
the physically nontrivial RQP constructions.

3.3 Relativistic free fields

3.3.1 Free field VEV

Free field VEV satisfy both the original Wightman axioms [9, 10, 56, 62] and the prospective
axioms A.1-7.

Satisfaction of the Wightman axioms suffices to determine that the neutral scalar field two-
point function W2(x1, x2) is a Källén-Lehmann form, a summation over a mass spectrum of the
Pauli-Jordan function [54]. The two-point functions used in the constructions are extensions of
the Pauli-Jordan function to non-zero spin and have Fourier transforms

W̃2(p1, p2)κ1κ2 = δ(p1 + p2) δ
+
2 M(p2)κ1κ2

= δ(p1 + p2) δ
−
1 δ

+
2 2
√
ω1ω2 M(p2)κ1κ2

(37)

with
δ±
k := θ(±Ek)δ(p2k − λ−2

ck )

and λck is the reduced Compton wavelength (14) for mass mκk
. The supports of δ±

k are on
the positive (+) or negative (−) energy mass shells. A mass mκ is associated with each field
component Φ(x)κ.

The free field VEV satisfy formal Hermiticity W.a and totality W.b. The properties of
the free field VEV suffice to imply that the quantum field (25) is a densely defined Hermitian
Hilbert space operator and indeed, the VEV generate algebraically from the Hermitian field
operator

Φo(f)κ = Φ+
o (f)κ +Φ−

o (f)κ

with creation and annihilation components that have commutation relations

[Φ−
o (f1)κ1 ,Φ

+
o (f2)κ2 ]± =W2(f1 f2)κ1κ2

and otherwise commute, and there is a cyclic vacuum state |Ωo⟩ with

⟨Ωo| . . .Φ−
o (f)κΩo⟩ = 0
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[23, 24, 52, 61]. The notation is that Φ+
o is this creation and Φ−

o is the annihilation component.
Whether the commutator or anti-commutator is used depends on the values of κ1, κ2 that
determine the statistics type of the field component, boson or fermion, as specified below in
(41). In this algebraic evaluation of VEV, each fj ∈ S(R4) [31]. From (26), the VEV functions
and VEV of the field operators are related

(D·)kFk,n−k((x)n)(κ)n
:= ⟨Φo(xk)κk

. . .Φo(x1)κ1Ω|Φo(xk+1)κk+1
. . .Φo(xn)κnΩ⟩.

Contrast of the two representations for the scalar product (6) and (21) with the definition of
adjoint operator provides and condition (22) provide that

Φo(xj)
∗
κj

= DΦo(xj)κj

with D from (8) and in the matrix notation (9). Then

Fk,n−k((x)n)(κ)n
= ⟨Ωo|

n∏
j=1

Φo(xj)κjΩo⟩

using the adjoint field and condition (22). The result of the algebraic evaluations for the VEV
of the free field is that

Fk,2n−k((x)n)(κ)n
=
∑
pairs

σ(S, (κ)n)

n∏
j=1

W2(xij , xℓj )κij
κℓj

(38)

with the summation over all (2n)!/(2nn!) ways of pairing the indices ij , ℓj ∈ {1, 2n} without
regard to order and the indices are ordered ij < ℓj within W2(xij , xℓj )κij

κℓj
. The sign of each

term σ(S, (κ)n) = ±1 is determined by particle statistics from the types of the indices (κ)n. The
σ(S, (κ)n) are positive if all indices (κ)n are boson indices; fermions introduce sign changes from
the anti-commutation of Φo(xj)

±
κj

that achieve the pairing of indices S = {(i1, ℓ1), . . . (in, ℓ+n)}.
The Fk,n−k((x)n)(κ)n

with an odd number of arguments n are zero. F0,0 = 1.
The array M(p)κ1κ2 in the two-point function (37) is used to construct the n-point con-

nected functions. The elements of the Nc×Nc array M(p)κ1κ2 are multinomials in the energy-
momentum components [9] and in matrix notation, the array satisfies

DM(p) = C†(p)C(p) (39)

with D the Dirac conjugation matrix from (8) and C†(p) is the Hermitian transpose of C(p).
The matrix nonnegativity [27] of DM(p) provides the degenerate scalar product (21) [37]. The
nonnegativity of the degenerate scalar product (21) with the free field VEV F is demonstrated
in appendix 6.9 for the basis function spaces P. Since DM(p) is a nonnegative matrix, it is
Hermitian and it follows from the condition (22) for D that

M(p)† = DM(p)DT . (40)
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Local commutativity A.5 is satisfied if the M(p) are (real orthogonal) permutation matrix
similar to a direct sum decomposition into two components,

OM(p)OT =

(
M1(p) 0

0 M2(p)

)
, (41)

that satisfy locality conditions
Mj(p)

T = ±Mj(−p). (42)

The + sign applies for the boson constituent M1(p) and the − sign applies for the fermion
constituentM2(p). (41) assigns a type, boson or fermion, to the value of each index κj ∈ {1, Nc}
for each j. The block diagonal array M(p) and consequently W2 vanishes unless both indices
κ1, κ2 are the same type, boson or fermion. Poincaré invariance of the scalar product is implied
by two additional conditions on M(p) and D.

S(A)M(p)S(A)T =M(Λ−1p)

S(A)D = DS(A)
(43)

with S(A) an Nc × Nc realization of the proper orthochronous Lorentz subgroup (30). A ∈
SL(2,C). Poincaré invariance is demonstrated in section 3.5.3. Example M(p), D and S(A)
that satisfy (22), (39), (42) and (43) are illustrated in section 3.3.2.
F exhibits local commutativity. Condition (42) implies commutation or anti-commutation

of free field components. The two-point function (37), the Fourier transform convention (16),
and translation invariance of the VEV express the local commutativity condition for free fields
as

⟨Ω| (Φo(x)κ1Φo(0)κ2 ∓ Φo(0)κ2Φo(x)κ1) Ω⟩ =

∫
dp δ+(p)

(
e−ipxM(p)κ1κ2 ∓ eipxM(p)κ2κ1

)
=

∫
dp e−ipx (δ+(p)M(p)κ1κ2∓δ−(p)M(−p)κ2κ1)

=

∫
dp e−ipxM(p)κ1κ2 (δ

+(p)− δ−(p))

=M(i ddx)κ1κ2

∫
dp e−ipx (δ+(p)− δ−(p))

with x := x1− x2 and p := p2, after reflection of the summation variable p 7→ −p in the second
term, substitution of (42), and the properties of the Fourier transform (18) applied to the
elements of the arrayM(p) that are multinomials in the components of p. If x2 < 0, then there is
a Lorentz transformation Λ with Λx = −x and as a consequence, the Pauli-Jordan commutator
function vanishes for space-like x. It then follows that the commutator/anti-commutator of free
field components generally vanishes for space-like x. This local commutativity is satisfied for
functions from S. S includes functions with bounded support. P ⊂ S but P includes none of
the functions with bounded support.
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If f(x) ∈ HP(R4), then Φo(f)κ = Φ+
o (f)κ and Φo(f

∗)κ = Φ−
o (f

∗)κ. As a consequence, if
gk, fn−k ∈ P, the only contributions Fk,n−k(g

∗
k fn−k) to scalar products are from

(D·)kFk,k((x)2k)(κ)2k
=
∑
S

σ(S, (κ)2k)
k∏
j=1

W2(xj , xij )κjκij
. (44)

The summation
∑

S includes the k! distinct pairings j, ij with j ∈ {1, k} and ij ∈ {k + 1, 2k}.
The scalar product (6) and definition (38) provide that σ(So, (κ)2k) = 1 for the pairing

So = {k, k − 1, . . . 1, k + 1, k + 2, . . . 2k}.

For f ∈ P ⊂ S, only k! of the (2k)!/(2kk!) terms for n = 2k in (38) contribute to the free
field VEV: terms in evaluations of the scalar product (21) that include two-point function
argument pairings with a second argument from {1, k} or a first argument from {k + 1, 2k} do
not contribute. For the two-point function (37) and scalar product (21), and because functions
in HP lack support on the negative energy mass shells,

W2(f
∗ g∗)κ1κ2 =W2(f g)κ1κ2 =W2(f g

∗)κ1κ2 = 0

and only W2(f
∗ g)κ1κ2 contributes if f, g ∈ HP(R4). These properties of the free field VEV

for function sequences P provide that F exhibits an unconditional signed symmetry, (48) in
section 3.4.2, that satisfies local commutativity A.5.

The free field VEV (44) result in scattering amplitudes with particle number conserved,
and incoming and outgoing momenta equal in pairs, that is, no exhibition of interaction. Con-
structed from the two-point function (37) and the basis function space S, the free fields Φo(f)
(25) are Hermitian Hilbert space operators that realize the Wightman, G̊arding-Wightman and
Haag-Kastler axioms [9, 10, 56, 62]. Constructed from (37) and the basis function spaces P,
the free fields Φo(f) are not Hermitian operators but an available extension of the basis func-
tion spaces to S achieves Hermitian field operators for the free field [31]. Hermitian Hilbert
space field operators appear to be peculiar to physically trivial realization. Physically trivial
relativistic realizations include generalized free and Wick polynomial (monomial) fields [9, 56].

3.3.2 Example M(p), S(A) and D

Realizations of free fields are available in [7, 9, 22, 23, 24, 52, 61]. The constructed nontrivial
VEV W employ a Dirac conjugation D, a realization for a two-point function M(p), and a
realization of the Lorentz subgroup S(A), A ∈ SL(2,C), from a free field. These Nc × Nc

matrices D,M(p), S(A) satisfy (22), (39), (42) and (43).
A neutral scalar field is realized by M(p) = S(A) = D = 1, the scalar realization of the

Lorentz subgroup. A charged scalar field is realized by two component fields (Nc = 2) with



3 CONSTRUCTIONS OF RELATIVISTIC QUANTUM MECHANICS 33

S(A) := I2, the 2× 2 identity, and

D :=

(
0 1
1 0

)
M(p) :=

(
0 1
1 0

)
=M(−p)T .

This field has a symmetry associated with a charge, SϕM(p)STϕ =M(p).

Sϕ :=

(
eiϕ 0
0 e−iϕ

)
and DSϕ = SϕD.

A massive vector boson field is realized with four component fields (Nc = 4). This spin-1
boson field uses a real 4× 4 representation of the Lorentz subgroup.

D := I4
S(A) := Λ

M(p)jk :=
p(j)p(k)
m2 − gjk

= C†(p)C(p).

p := (p(0), p(1), p(2), p(3)) and parentheses were used to distinguish energy-momentum vector
components from energy-momentum vectors pj . Here, m is shorthand for the inverse of the
Compton wavelength mc/ℏ. g is the 4× 4 Minkowski signature matrix (19) and Λ is a Lorentz
transformation determined by A ∈ SL(2,C) in (31). M(p) =M(−p)T . In four dimensions with
p := (p0,px,py,pz),

C†(p) =



√
p20−m2

m 0 0 0

p0
m

px√
p20−m2

√
p2

y+p2
z

p20−m2 0 0

p0
m

py√
p20−m2

−pxpy√
(p2

y+p2
z)(p

2
0−m2)

pz√
p2

y+p2
z

0

p0
m

pz√
p20−m2

−pxpz√
(p2

y+p2
z)(p

2
0−m2)

−py√
p2

y+p2
z

0


.

A massive spinor fermion field is also realized by four component fields (Nc = 4). This
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spin-1/2 fermion field uses a 4× 4 complex representation of the Lorentz subgroup.

D :=

(
0 I2
I2 0

)

S(A) :=

(
A 0

0 A

)

M(p) :=

(
0 AP

ATP 0

)

AP = A†
P :=

(
p0 + pz px + ipy

px − ipy p0 − pz

)

with 2× 2 AP , I2 and A ∈ SL(2,C). M(−p) = −M(p)T .

DM(p) = C†(p)C(p) =

(
cT (p) 0
0 c†(p)

)(
c(p) 0
0 c(p)

)
is a nonnegative matrix for p := (p0,px,py,pz) within the forward cone and

c(p) =

 √p0 + pz
px+ipy√
p0+pz

0 m√
p0+pz

 .

This field also has a symmetry SϕM(p)STϕ =M(p) associated with a charge,

Sϕ :=

(
ϕ 0

0 ϕ

)
ϕ :=

(
eiϕ 0
0 eiϕ

)
and DSϕ = SϕD.

The mixed product property of the direct sum (U⊕V )(U ′⊕V ′) = (UU ′⊕V V ′) and the Kro-
necker product (U ⊗ V )(U ′⊗ V ′) = (UU ′⊗ V V ′) [28] provides that direct sums and Kronecker
(tensor) products ofM(p), S(A), D that satisfy (22), (39), (42), (43) are also solutions. Real or-
thogonal similarity transforms OM(p)OT , OS(A)OT , ODOT preserve solutions. Compositions
of these example representations of M(p), S(A), D and their sub-representations provide a rich
class of realizations of relativistic quantum physics.

3.4 Nontrivial relativistic fields

VEV that exhibit nontrivial relativistic physics are displayed in this section. The construction
generalizes the scalar example (10). The constructed VEV are cluster expansions of signed
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symmetric, connected VEV functions CW. The VEV satisfy properties A.1-7 and have forms
suggested by earlier studies [2, 39] and by low order terms from Feynman series [31, 35].

From the definition of scalar product (21) and field (25), the VEV are generalized functions
(26) designated

⟨Φ(xk)κk
. . .Φ(x1)κ1Ω|Φ(xk+1)κk+1

. . .Φ(xn)κnΩ⟩ = (D·)kWk,n−k((x)n)(κ)n

with Dirac conjugation D introduced in the ∗-dual of function sequences (8) and using the
matrix notation (9).

3.4.1 Connected functions

The VEV fnctions are cluster expansions of connected functions. Connected functions include
the two-point functions (37) of free fields and four or more argument connected functions
illustrated by (10).

A connected function, CWk,n−k((x)n)(κ)n
, attenuates with great space-like separation of its

arguments. A connected function does not significantly contribute to scalar products if the
support of fn((x)n) ∈ S(R4n) consists of two greatly space-like separated volumes. That is,
CWk,n−k((x)n)(κ)n

is connected if

lim
ρ→∞

CWk,n−k(fn(ρ))(κ)n
= 0 (45)

with
fn(ρ) := fn(x1, . . . xj , xj+1 − ρa, . . . , xn − ρa).

The Lorentz vector a is space-like (a2 < 0), ρ ∈ R, and 1 ≤ j < n. (45) applies for all (Nc)
n

components labeled by the κj . In the scalar product (21),

fn((x)n) = h∗
k(((x)k)gn−k((x)k+1,n) ∈ S(R4n)

with hk ∈ HP(R4k) and gn−k ∈ HP(R4(n−k)).
The connected functions used in the constructions are designated

CW1,1(x1, x2)κ1κ2 :=W2(x1, x2)κ1κ2
CW̃k,n−k((p)n)(κ)n

:= cnδ(p1 + . . . pn) Qk,n−k((p)n)(κ)n

(46)

with 2 ≤ k ≤ n − 2, n ≥ 4 and even, n = 2ℓ for ℓ ∈ N. W2 is a free field two-point function
(37) from section 3.3.1, and the elements of the Lorentz covariant array Qk,2n−k are products
of delta functions supported on mass shells for finite masses mκj and regular functions of the
energy-momenta. Qk,2n−k is displayed in (55) of section 3.4.3. To satisfy Lorentz covariance
A.3 for nonzero spins, odd orders of the VEV vanish.

CWk,2ℓ−1−k((x)2ℓ−1)(κ)2ℓ−1
:= 0
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for all k. To satisfy elemental stability A.7,

W0,k =Wk,0 =W1,k =Wk,1 = 0

for k ≥ 2 and for all κj . A.7 follows from the cluster expansion, section 3.5.4, and setting

CW0,k =
CWk,0 =

CW1,k =
CWk,1 = 0

for k ≥ 4 and
W0,2 =W2,0 = 0

for functions from P. The field component means (vacuum polarizations) are set to zero,

W1,0 =W0,1 = 0,

for all components κ1 without loss of generality since nonzero means are independently assigned
as discussed in section 3.4.5. The remaining VEV is

W0,0 := 1,

the normalization of the vacuum. In these examples, the elementary particles are created or
annihilated in pairs although more generally, odd order VEV need not vanish in developments
that include scalar fields [31, 33].

If the Qk,2n−k((p)2n)(κ)2n
in (46) are locally absolutely summable, polynomial growth func-

tions of the momenta pk after evaluation of the mass shell delta functions sets p0k = ±ωk, then
the functions (46) are connected. Test functions provide that (45) is a summable function of
(p)n that, due to translation invariance and after evaluation of the mass shell delta functions,
includes a factor exp(iρa · (p1 + . . .pk)) with 1 < k < n − 1. Then, the Riemann-Lebesgue
lemma and Poincaré invariance provide that the functions (46) decline as ρ→∞ for a2 < 0 in
(45).

3.4.2 Symmetric functions

In this section, notation is established to describe signed symmetric VEV functions. Local
commutativity A.5 follows for signed symmetric VEV functions. The constructed VEV are
signed symmetric with transpositions among the k ∗-dual function arguments or transpositions
among the n − k function arguments in the VEV functions Wk,n−k((x)n)(κ)n

, Argument type
follows from the degenerate scalar product (21).

A convenient shorthand notation for VEV is to designate

Wk,n−k(A) :=Wk,n−k((x)A)(κ)A
(47)

for a set of n arguments with indices designated A = {i1, . . . in}. That is, (x)A := xi1 , . . . xin
and similarly (κ)A := κi1 , . . . κin .
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In the notation (47), a sequence (24) of functions V is considered signed symmetric if the
elements satisfy

Vk,n−k(π2(π1({1, n}))) = σ(π1, (κ)n)σ(π2, (κ)n)Vk,n−k({1, n}) (48)

for every k, n. π1({1, n}) represents one of the k! permutations of a sequence {1, k}. The
permutation π1({1, n}) is applied to a sequence of n elements {1, n}. π2({1, n}) represents one
of the (n− k)! permutations of the sequence {k + 1, n} within a sequence of n elements {1, n}.
That is, in a notation with permutations denoted

πν(A) := {πν(i1), πν(i2), . . . πν(in)},

and ν = 1, 2,

π1({1, n}) = {π1(1), π1(2) . . . π1(k), k + 1, k + 2, . . . n}
π2({1, n}) = {1, 2, . . . k, π2(k + 1), π2(k + 2) . . . π2(n)}.

Signs σ(πν , (κ)n) = ±1 are assigned to each permutation to satisfy local commutativity A.5
with normal commutation relations [9].

σ(π1, (κ)n) = 1 if π1({1, n}) = {1, n}
σ(π2, (κ)n) = 1 if π2({1, n}) = {1, n}.

σ(π′
ν , (κ)n) = −σ(πν , (κ)n)

if the permutations π′
ν and πν differ by one transposition of two adjacent fermion indices, and

σ(π′
ν , (κ)n) = σ(πν , (κ)n),

if the transposition is either two adjacent boson indices or transposition of a boson with an
adjacent fermion index. ν = 1, 2. In (41) of section 3.3.1, arguments xj , κj are assigned as
boson or fermion by the value of κj ∈ {1, Nc}. The sign associated with an ordering of indices
A = {i1, i2, . . . in} = π2(π1(Ao)) is with respect to a reference order Ao := {j1, j2, . . . jn}. The
sign for an A with respect to Ao is accumulated over a sequence of adjacent index transpositions
that result in the index order A starting with Ao. The sign is determined by the product of signs
from the sequence of transpositions, and the sign is independent of the choice for a sequence of
transpositions that result in A from Ao [9].

The signed symmetrization V of a sequence (24) of generalized functions v is

Vk,n−k(Ao) :=
∑
π1

σ(π1, (κ)Ao)

(∑
π2

σ(π2, (κ)Ao) vk,n−k(π2(π1(Ao)))

)
. (49)

The summations
∑

π1
and

∑
π2

include all k! permutations of the indices labeled {1, k} and all
(n− k)! permutations of the indices labeled {k+ 1, n}, respectively. The V constructed from a
generalized function v in (49) is signed symmetric.
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The free field VEV are signed symmetric for function sequences from P. The expression
(44) for F is equivalent to

Fk,k({1, 2k}) =
∑
π1

σ(π1, (κ)n)

∑
π2

σ(π2, (κ)n)
1

k!

k∏
j=1

W2(xj , x2k+1−j)κjκk+j

 .

From the vanishing of two-point functions with indices of distinct type (41), the pair of indices
of each contributing two-point function are necessarily the same type, and since n = 2k, trans-
positions among the last k indices are redundant with transpositions among the first k indices.
The factor k! compensates for the redundant transpositions. The sign is verified using (50)
below and (6); the free field VEV are the signed symmetrization of a nonnegative form.

If w provides a degenerate scalar product, then its signed symmetrization W also provides
a degenerate scalar product since

W(f∗, f) = w(g∗, g) ≥ 0 (50)

with
g = (f0, f1, . . .

∑
π1

σ(π1, (κ)n)fk(π1({1, k})), . . .)

from (49) for the scalar product (21).
If V provides a degenerate scalar product, then a scaled sequence of functions Va generated

from V as
Va := (|a0|2, a1a0V1,0, . . . akan−kVk,n−k, . . .), (51)

also provides a degenerate scalar product. Each ak ∈ C and |ak| ≠ 0. That Va(f∗, f) ≥ 0
follows from V(g∗, g) ≥ 0 by setting the sequence f = (g0/a0, g1/a1, . . .) ∈ P in the scalar
product (21).

3.4.3 Functions that exhibit interaction

The higher order connected functions are conveniently distinguished with the designation CU .

CUk,n−k((x)n)(κ)n
:= CWk,n−k((x)n)(κ)n

if n ≥ 4 (52)

with CWk,n−k((x)n)(κ)n
from the description of connected functions (46) and the CUk,n−k are

zero for n < 4. From (46), the Fourier transforms of the connected functions are

C Ũk,n−k((p)n)(κ)n
:= cnδ(p1 + . . . pn) Qk,n−k((p)n)(κ)n

.

These Qk,2n−k((p)2n)(κ)2n
are Lorentz covariant, are supported solely on mass shells, and consist

of summations with nonnegative weight of factors common across orders k, n analogously to the
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factors of positive matrices [27] or nonnegative measures from the Bochner–Schwartz theorem
for positive distributions [21]. Translation invariance of the scalar product (21) is equiva-
lent to energy-momentum conservation. Limiting the momentum support of the connected
C Ũk,n−k((p)n)(κ)n

to mass shells associates states with free particles described by representa-
tions of the Lorentz group [9]. From cluster decomposition A.6, function sequences f ∈ HP
describe nearly free particles when the spatial support of each argument is isolated from the
spatial support of all other arguments.

With the substitutions,

δ(p1 + . . . pn) =

∫
du

(2π)4

n∏
j=1

e−ipju

and

cn :=

∫
dσ(λ) λn, (53)

the Fourier transforms of the CUk,2n−k((x)2n)(κ)2n
are

C Ũk,2n−k({1, 2n}) :=
∫∫

dσ(λ)
du

(2π)4
λ2n

2n∏
j=1

e−ipju Qk,2n−k((p)2n)(κ)2n
. (54)

using the shorthand notation (47). The summation du is over R4 and dσ(λ) is a summation
with nonnegative weight over R. Then c2n ≥ 0. For example, cn = ρn for dσ(λ) = δ(λ− ρ)dλ,
or cn = n!/ρn+1 for θ(λ) exp(−ρλ)dλ with 0 < ρ ∈ R. The form (54) is selected to factor
CUk,n−k((x)n)(κ)n

and demonstrate nonnegativity of the scalar product (21).
The array Qk,n−k((p)n)(κ)n

is signed symmetric (49) with terms that factor appropriately
for nonnegativity of the scalar product.

Qk,n−k((p)n)(κ)n
:=
∑
π2

σ(π2, (κ)n)

(∑
π1

σ(π1, (κ)n) qk,n−k(π2(π1({1, n})))

)

qk,n−k((p)n)(κ)n
:=

n∏
j=1

(
δ(p2j − λ

−2
cj )

d

dρj

)
exp(

∑
a,b∈Jk,n

ρaρbH(pa, pb)κaκb
)

(55)

with the qk,n−k((p)n)(κ)n
evaluated at (ρ)n = 0 after the differentiations. The λcj are the

Compton wavelengths (14) for the finite masses mκj . To comply with elemental stability A.7,

Qk,2n−k({1, 2n}) := 0 if k = 0, 1, 2n− 1, 2n.

Justified in (28), CUk,n−k is limited to n ≥ 4 to eliminate a divergent two-point function that
results from substitution of the extrapolation of (55) to n = 2 into (54). The exponential func-
tion in qk,n−k((p)n)(κ)n

is a function of products of pairs ρaρb with a ̸= b and as a consequence
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of evaluation at (ρ)n = 0, the odd order connected functions are zero.

Qk,2n+1−k({1, 2n+ 1}) = 0.

The summations over argument transpositions π1 and π2 are described in section 3.4.2. Signed
symmetry (48) of CUk,n−k({1, 2n}) follows from the signed symmetry of Qk,n−k((p)n)(κ)n

.
The H(pa, pb)κaκb

are functions defined below in (56) and the summation a, b ∈ Jk,n with
a, b ∈ {1, n} ⊂ N is defined below in (58). These forms are selected to factor the constructed
CUk,n−k((x)n)(κ)n

.
The Hκaκb

are Nc ×Nc matrices of generalized functions over the energy-momenta.

H(pa, pb)κaκb
:=


B(pa + pb)κaκb

if a, b ∈ {1, k} or a, b ∈ {k + 1, n}

Υ(−pa + pb)κaκb
if a ∈ {1, k}, b ∈ {k + 1, n}

0 if a ∈ {k + 1, n}, b ∈ {1, k}.

(56)

That is, H = B if both arguments are ∗-dual function arguments or if both arguments are
function arguments, and H = Υ or zero if the arguments are split, one ∗-dual function and one
function argument in the scalar product (21). Addressed in section 3.5.5, this form for H(p1, p2)
satisfies regularity A.1 with nonconstant H(p1, p2). Due to Lorentz covariance, nonconstant
H(p1, p2) are necessarily singular within R8 and (56) is selected to exclude the singularities
from E+n , the region (36) of joint support of C Ũk,n−k((p)n)(κ)n

and functions from P. The
matrices B(p) and Υ(p) are Fourier or Laplace transforms of the two-point function array
M(p) in the two-point function (37) in the connected functions (46).

B(p) :=

∫
dµB(s) e

ispM(s)

Υ(p) :=

∫
dµΥ(s) e

−spM(s)
(57)

with s ∈ R4, dµB(s) and dµΥ(s) are real-valued Lorentz invariant measures, dµΥ(s) is a nonneg-
ative measure, and sp = s0p0− s ·p is Lorentz invariant. The forms (57) with the factorization
(39) of M(p) complete a factorization of the constructed CUk,n−k((x)n)(κ)n

. Considering the
applications of D from the ∗-dual functions (8), three sets of factors are distinguished in (55).

(D·)k exp(
∑

a,b∈Jk,n

ρaρbHκaκb
) := exp(

k∑
b1>a1=1

ρa1ρb1(DBD
T )κa1κb1

)

× exp(
n∑

b2>a2=k+1

ρa2ρb2Bκa2κb2
) exp(

k∑
a3=1

n∑
b3=k+1

ρa3ρb3(DΥ)κa3κb3
).

(58)
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∑k
b>a=1 designates

∑k−1
a=1

∑k
b=a+1. (58) defines the summation a, b ∈ Jk,n in (55). Many other

forms for Qk,2n−k((p)2n)(κ)2n
also provide realizations that satisfy A.1-7. For example, the

substitution

k∑
a3=1

n∑
b3=k+1

ρa3ρb3(DΥ)κa3κb3
7→

k∑
a3=1

n∑
b3=k+1

zk+1−a3zb3−k ρa3ρb3(DΥ)κa3κb3

with zj ∈ C can provide a contribution from Υ for fermions. Demonstration that the factoriza-
tion of CU provides a degenerate scalar product (21) is in section 3.5.2.

Like M(p), the H(pa, pb)κaκb
described in (56) and (57) are zero if κa and κb are distinct

index types, a fermion with a boson index.
The elements M(p)κaκb

are multinomials in the energy-momentum components and greater
spins result in higher order multinomials [9]. The selected support of the VEV and functions in
P satisfy regularity A.1 by appropriate exclusion of points (pa ± pb)2 = 0. From the limitation
of the energy-momentum support of the VEV and functions (11) in P to E+n , the singularities
of H(p1, p2) at (pa ± pb)2 = 0 are excluded from the summations in the scalar products (21).
The indicated dependence on M(p)κ1κ2 and vanishing of the odd orders Uk,2n−1−k implements
Poincaré invariance of the scalar product for nonzero spins, [37] and section 3.5.3. Odd orders
can be included for spin zero fields [33].

The expansions (54), (55) and (58) complete construction of example physically nontrivial
higher order connected functions. The constructed CU are connected (45) and signed symmetric
(48).

3.4.4 Cluster expansion: composition of connected functions into VEV

In this section, the cluster expansion of a generalized function sequence W is described. The
VEV (26) are composed of the connected functions (46) described in sections 3.3.1 and 3.4.3.

Cluster expansion is illustrated by the two- and four-point VEV functions. If the permuta-
tion matrix O in (41) is the identity, with designations B for the boson and F for the fermion
blocks of the block diagonal CW1,1, and in the abbreviated notation (47),

B(12) := CW1,1(12) if 1 ≤ κ1, κ2 ≤ Nb

F (12) := CW1,1(12) if Nb + 1 ≤ κ1, κ2 ≤ Nc
CW1,1(12) = 0 if the index types of κ1 and κ2 differ,

then the cluster expansion is

W1,1(12) = B(12) + F (12)
W2,2(1234) = B(13)B(24) +B(14)B(23)

+B(14)F (23) +B(13)F (24) + F (13)B(24) + F (14)B(23)
−F (13)F (24) + F (14)F (23) + CW2,2(1234).

(59)
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In (59), vacuum polarization is zero. Nb is the number of boson field components and Nb ≤ Nc,
the number of field components. For the energy support limited functions (11) from P, only
W1,1(f

∗
1 g1) contributes.

W1,1(f2) =W1,1(f
∗
2 ) =W1,1(f1 g

∗
1) = 0

if f2, f1, g1 ∈ P. The index type of each index κj , boson or fermion, is determined in (41)
and the free field contribution to (59) is determined in section 3.3.1 by the commutation/anti-
commutation relations of free field operators. The composition (59) satisfies both local com-
mutativity A.5 with normal commutation relations [9], and cluster decomposition A.6. CW2,2

is signed symmetric (48). Satisfaction of local commutativity A.5 follows from the signed sym-
metry of the connected functions for function sequences from P.

W2,2(1234) = ±W2,2(2134)

= ±W2,2(1243)

where ± is the sign from transposition of the arguments x1, κ1 with x2, κ2, or from the trans-
position of the arguments x3, κ3 with x4, κ4, respectively. The strong cluster decomposition
condition A.6 is satisfied due to the connectivity (45) of the CWk,n−k. For arguments 1 and 3
space-like distant from arguments 2 and 4 (two ∗-dual arguments, two normal arguments, the
support of the functions g∗

1f
∗
1 f1g1 has the support of the f ’s arbitrarily space-like distant from

the support of the g’s),
W2,2(1234)→W1,1(14)W1,1(23).

The remaining cases in axiom A.6 (f∗
2 g2, f

∗
2 f1g1 and f

∗
1 g

∗
1f2) all result in the four-point functions

asymptotically approaching zero.
More generally, VEV are determined by the sequence of functions W expanded in signed

products of free field VEV functions F with VEV functions U that introduce interaction.

W = F ◦ U . (60)

F from (44) results from cluster expansion of the two-point connected function and U results
from cluster expansion of the sequence of connected functions CU described in section 3.4.3.
To satisfy Poincaré invariance A.3, the sequences F and U composed in the construction (60)
transform with the same representation of the Lorentz subgroup,

A signed product of two VEV function sequences (24) T and V is designated the ◦-product.
The resulting signed symmetric (48) VEV function sequence W is described

W := T ◦ V (61)
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with elements that are the signed symmetrization (49) of a VEV function sequence w con-
structed from the elements of T and V.

Wk,n−k({1, n}) =
∑
π1

σ(π1, (κ)n)

(∑
π2

σ(π2, (κ)n) wk,n−k(π2(π1({1, n})))

)

wk,n−k({1, n}) :=
k∑
ℓ=0

n−k∑
j=0

Tℓ,j(Ao)
ℓ!j!

Vk−ℓ,n−k−j(A′
o)

(k−ℓ)!(n−k−j)!

(62)

with the reference argument argument order Ao, A
′
o

Ao := {1, ℓ} ∪ {k+1, k+j}

A′
o = {1, n} \Ao = {ℓ+1, k} ∪ {k+j+1, n}.

(63)

The terms in the summation (62) with the arguments in the reference order have positive sign.
In section 3.5.1 it is demonstrated that this choice of sign results in a nonnegative degenerate
scalar product (21). From (26), ∗-dual arguments are antiordered in the scalar product but
arguments of the VEV functions W are in natural order. Signs are determined in section 3.4.2
to exhibit normal statistics. ℓ = 0 provides that there are no ∗-dual arguments in T0,j and
ℓ = j provides that there are no function arguments in Tj,j . Similarly for Vk−ℓ,n−k−j if ℓ = k
or ℓ = 2k + j − n. The terms in the expansion T ◦ V are products of elements from T and
V, factors include no arguments in common and all arguments are present in each term of the
expansion (62). As a consequence, the sequence T ◦V consists of generalized functions if T and
V are sequences of generalized functions.

For signed symmetric factors T and V in a ◦-product, the assignment of signs (48),—

Vk,n−k(π2(π1({1, n}))) = σ(π1, (κ)n)σ(π2, (κ)n)Vk,n−k({1, n})

and similarly for Tk,n−k, enables a convenient form for the elements of W = T ◦ V with the
arguments in natural order. Use of (48) to transpose the arguments into natural order,

Wk,n−k({1, n}) =
k∑
ℓ=0

n−k∑
j=0

(∑
s1

∑
s2

σ1σ2 Tℓ,j(A) Vk−ℓ,n−k−j(A′)

)
(64)

with the abbreviated notation σν := σ(πν , (κ)n) for ν = 1, 2, and

A = π1(π2(Ao)) and A′ = π1(π2(A
′
o))

with the reference order Ao and A
′
o from (63). The A′ are the set complements with respect to

{1, n} of A. The summations
∑

s1

∑
s2

include only the subset of the permutations π1, π2,

{sν} ⊂ {πν}
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that result in naturally ordered A and A′. With

A = π1(π2(Ao)) = i1, i2, . . . iℓ+j ,

the permutation is included in the summation
∑

s1

∑
s2

only if i1 < i2 < . . . iℓ+j and the
n − ℓ − j argument indices in A′ are similarly ordered. Equality of (64) with (62) follows
from the signed symmetry of T and V that preserves the terms in (62) with the selection of
argument order. After the indicated argument reorderings, there are ℓ!j!(k − ℓ)!(n− k − j)! of
each distinct term. The normalization in (62) results in a magnitude unity coefficient for each
term Tℓ,j(A) Vk−ℓ,n−k−j(A′) with distinct, naturally ordered sets of arguments.

Demonstrated in section 3.5, axioms A.1-7 are satisfied if the factor sequences in the con-
struction (60) are signed symmetric (48) and each factor sequence satisfies A.1-7. The free field
contributions F associate the constructions with particles, section 3.6, and the higher-order
connected functions U introduce interaction, sections 3.9 and 4. In the construction (60) of
VEV, W = F ◦ U , only the Fℓ,ℓ contribute for function sequences from P. Consequently, only
terms with j = ℓ contribute to the summation in (62) and then

wk,n−k({1, n}) :=
k∑
ℓ=0

Fℓ,ℓ(Ao)
(ℓ!)2

Uk−ℓ,n−k−ℓ(A′
o)

(k−ℓ)!(n−k−ℓ)!
. (65)

The ◦-product (62) is commutative, associative and distributive with addition for VEV
function sequences. section 3.5.3. Relabeling the summations in the ◦-product (62) ℓ′ = k − ℓ
and j′ = n− k − j,

wk,n−k({1, n}) =
k∑
ℓ=0

n−k∑
j=0

Tℓ,j(Ao)
ℓ!j!

Vk−ℓ,n−k−j(A′
o)

(k−ℓ)!(n−k−j)!

becomes

wk,n−k({1, n}) =
k∑

ℓ′=0

n−k∑
j′=0

Vℓ′,j′(A′
o)

ℓ′!j′!

Tk−ℓ′,n−k−j′(Ao)

(k−ℓ′)!(n−k−j′)!
.

This second expression is (62) for V ◦ T with the same terms and signs as T ◦ V. Then, T ◦ V
is commutative. That (62) is a summation of arithmetic multiplications provides that the
◦-product is associative and distributive with addition of sequences.

The sequence

exp ◦(T ) := Ω +
∞∑
j=1

1

j!
T ◦ T ◦ . . . T (66)

has j factors of T in the jth term and the ◦-product is from (61). Ω is the sequence (1, 0, 0, . . .).
exp ◦(T ) is designated the cluster expansion of T .
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The sequence U is the cluster expansions (66) of the higher order connected functions (54),

U := exp ◦(CU). (67)

The free field functions F in (44) constructed from the commutation and vacuum functional
properties of the algebra of Hermitian free field operators are also a cluster expansion. The
sequence

F = exp ◦(CF) (68)

defined with
CF1,1 :=W2.

W2 is the two-point function from (46) and all other CFk,n−k = 0. The nonzero elements of F
are

Fk,k =
1

k!
(CF◦)k.

Equality of the cluster expansion with the algebraic construction of F in (44) is demonstrated
by induction. Inspection of (44) and (68) verifies agreement for k = 1. Assertion that

Fk,k({1, 2k}) =
∑
S

σ(S, (κ)2k)
k∏
j=1

W2(j, ij)

and application of the cluster expansion to evaluate the next element provides

Fk+1,k+1({1, 2k + 2}) =
1

k + 1
Fk,k({1, k}∪{k + 2, 2k + 1}) ◦W2(k + 1, 2k + 2)

=
1

k + 1

∑
S

σS

k∏
j=1

W2(j, ij) ◦W2(k + 1, 2k + 2)

with notation from (44), (47) and (66), and the function argument labels {ij} adjusted to
ij ∈ {k + 2, 2k + 1} for j ∈ {1, k}.

σS := σ(S, {1, k}∪{k + 2, 2k + 1})

from the algebraic construction (44). Substitution of the ◦-product (64) provides

Fk+1,k+1({1, 2k+2}) =∑
s1

∑
s2

σ1σ2
k+1

∑
S

σS

k∏
j=1

W2(s2(s1(j)), s2(s1(ij)))W2(s2(s1(k+1)), s2(s1(2k+2)))


with the abbreviated notation σν := σ(πν , (κ)2k+2) for ν = 1, 2. The sums over permutations
s1, s2 are from (64). From the free field sequence F in the algebraic construction (44), the



3 CONSTRUCTIONS OF RELATIVISTIC QUANTUM MECHANICS 46

summation
∑

S includes the k! distinct pairings j, ij with j ∈ {1, k} and ij ∈ {k + 2, 2k + 1}.
S = {1, . . . k, i1, . . . ik}. From section 3.4.2, signs accumulate as the product of signs from
adjacent argument transpositions that accumulate to achieve a final argument order. Then,

σ(S′, (κ)2k+2) = σ(π1, (κ)2k+2)σ(π2, (κ)2k+2)σ(S, (κ)2k)

with S′ = {1, . . . k + 1, i1, . . . ik, 2k + 2} with reference argument order σ(S′
o) = 1 for S′

o =
{k+1, . . . 1, k+2, . . . 2k+2}. The terms are each a product of identical two-point functions with
distinct pairings of arguments, and the indicated permutations s1, s2 result in an accumulation
of k + 1 of each distinct term. Then

Fk+1,k+1({1, 2k+2}) =
∑
S′

σS′

k+1∏
j=1

W2(j, ij)

with summation over distinct pairings of arguments. Finally, induction verifies that the two
expressions for the free field VEV are equivalent for function sequences from P.

From (66), the commutivity, associativity and distributivity with addition of sequences of
the ◦-product (61), and the binomial expansion provide

exp ◦(T + V) =

∞∑
N=0

1

N !
((T + V)◦)N

=

∞∑
N=0

1

N !

N∑
ν=0

(
N

ν

)
(T ◦)ν ◦ (V◦)N−ν

=

∞∑
N1=0

∞∑
N2=0

1

N1!N2!
(T ◦)N1 ◦ (V◦)N2

= (exp ◦(T )) ◦ (exp ◦(V))

(69)

from relabeling terms in summations. The expansions for U and F , (67) and (68) respectively,
substituted into the construction (60) provides that

W = exp ◦(CF) ◦ exp ◦(CU)

= exp ◦(CF + CU)
(70)

from the identity (69). The sequences of connected functions add in the construction (60).
Inversion of (66) defines truncated functions TW from a sequence W.

W := exp ◦( TW). (71)



3 CONSTRUCTIONS OF RELATIVISTIC QUANTUM MECHANICS 47

Similarly to RQFT [9], truncated functions are connected in the constructions if vacuum polar-
ization is zero. If both 1W and 2W are signed symmetric and satisfy A.1-7, then 1W◦2W realizes
relativistic quantum physics and this leads to consideration of prime and divisible realizations
[26]. From (69), truncated functions add.

The cluster expansions (67) and (68) and specification of the connected functions (46) com-
plete these contructions of physically nontrivial realizations of RQP. There is a realization of
relativistic quantum physics for: every realization of free fields (selection of Nc,M(p), D, S(A));
nonnegative measure dσ (that determines cn, the relative contributions of the connected func-
tions); and Lorentz invariant measures dµB(p) and dµΥ(p) (that characterize interactions).
Satisfaction of prospective axioms A.1-7 is verified in section 3.5.

3.4.5 Vacuum polarizations

Mean VEV of the field ⟨Ω|Φ(x)κΩ⟩ are set to zero in the development above without loss of
generality. Nonzero means are independently specified for the boson field components without
impact to satisfaction of A.1-7. The addition of a constant to the quantum field defined by
(25) implements fields Φ(x)κ with finite means except, if κ is a fermion index, then addition of
a constant to the field violates anticommutation.

The VEV

(D·)k Vk,n−k({1, n}) :=
k∏
ℓ=1

aκℓ

n∏
j=k+1

aκj

satisfy A.1-6 and an appropriately restated A.7. The constants

aκ := ⟨Ω|Φ(x)κΩ⟩

and aκ is finite only for boson indices κ. Applications of Dirac conjugations D use the matrix
notation (9) and the abbreviated notation (47) is used for the VEV functions.
V is signed symmetric and as a consequence of the properties of the ◦-product (61), and

from (71),
W = F ◦ U ◦ V = exp ◦(CF + CU + TV)

satisfies A.1-6 and an appropriately restated A.7.

3.5 Satisfaction of the axioms

3.5.1 Positive definite ◦-products

In this section, it is demonstrated that the ◦-product composition of two signed symmetic
VEV function sequences (24) that each provide a degenerate scalar product (21) provides a
degenerate scalar product. From (62),W = T ◦V is the signed symmetrization (49) of w. From
(50), if w provides a degenerate scalar product then W provides a degenerate scalar product.
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In this section it is demonstrated that w(f∗, g) with the scalar product (21) and w from (62)
provides a degenerate scalar product for elements in the tensor product of linear vector spaces
each with degenerate scalar products from T and V, respectively. Degenerate scalar products
Ta and Va result from scaled sequences of the degenerate scalar products T and V using (51).
Linear vector spaces with degenerate scalar products are also designated pre-Hilbert spaces.

If both T and V provide degenerate scalar products, then the tensor product of the pre-
Hilbert spaces that result from scaled V and T has elements labeled f ⊗ g and a degenerate
scalar product

w((f
1
⊗ f

2
)∗, g

1
⊗ g

2
) = Ta(f∗

1
, g

1
)Va(f∗

2
, g

2
). (72)

The scales (51) on the degenerate scalar products are aℓ := 1/ℓ! in both instances. In the pre-
Hilbert spaces of function sequences based on P for generalized functions Ta and Va, fields ΦT
and ΦV are defined (25). These operations extend to the tensor product space. The elevations
ΦT ⊗ I and I⊗ ΦV to the tensor product space are

(ΦT ⊗ I)f ⊗ g = (ΦT f)⊗ g

and
(I⊗ ΦV)f ⊗ g = f ⊗ (ΦVg).

The composite vacuum is Ω = ΩT ⊗ ΩV . To compact notation, the arguments of the fields are
understood. The construction is a variation of a construction due to Borchers and Uhlmann
[26, 47]. |O(fn)Ω⟩ with

O(fn) :=
∑
(κ)n

∫
d(x)n

(
n∑
ℓ=0

(ΦT ⊗ I)ℓ(I⊗ ΦV)
n−ℓ

ℓ!(n− ℓ)!

)
fn((x)n)(κ)n

are elements of the tensor product space with

(ΦT ⊗ I)ℓ(I⊗ ΦV)
n−ℓ :=

 ℓ∏
j=1

(ΦT (xj)κj ⊗ I)

 n∏
j=ℓ+1

(I⊗ ΦV(xj)κj )

 .

In the tensor product space,
∑

n,m⟨O(fn)Ω|O(gm)Ω⟩ is the degenerate scalar product for func-
tion sequences from P.

∑
n,m

⟨O(fn)Ω|O(gm)Ω⟩ =
∑
n,m

∑
(κ)n+m

∫
d(x)n+m

n∑
ℓ=0

m∑
j=0

×⟨(ΦT ⊗ I)ℓ(I⊗ ΦV)
n−ℓ

ℓ!(n− ℓ)!
Ω|(ΦT ⊗ I)j(I⊗ ΦV)

m−j

j!(m− j)!
Ω⟩

×fn((x)n)(κ)n
gm((x)n+1,n+m)(κ)n+1,n+m

.
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The definition of scalar product, and the operators ΦT (xj)κj ⊗ I and I⊗ ΦV(xj)κj , the ∗-dual
(8) and the relation between VEV and generalized functions (26) result in∑

n,m

⟨O(fn)Ω|O(gm)Ω⟩ =
∑
n,m

∑
(κ)n+m

∫
d(x)n+m

n∑
ℓ=0

m∑
j=0

Tℓ,j(Ao)
ℓ!j!

Vn−ℓ,m−j(A
′
o)

(n−ℓ)!(m−j)!

×fn((x)n)∗
(κ)n

gm((x)n+1,n+m)(κ)n+1,n+m

for Ao, A
′
o from (63). Then substitution of the expression (62) for functions wk,n−k identifies

that
w(f∗, g) =

∑
n,m

⟨O(fn)Ω|O(gm)Ω⟩. (73)

As a consequence. w(f∗, f) ≥ 0 since it is the squared norm of a vector in the tensor product
space.

Satisfaction of positive definiteness A.2 for W = T ◦ V follows from (50), (51) and (62) if
both T and V are signed symmetric and satisfy A.1-2 for function sequences P. ForW = F ◦U ,

W(f∗, f) ≥ 0

if U satisfies positive definiteness since it is established that F is positive, appendix 6.9. U is
constructed as signed symmetric and from (44), F is signed symmetric. Satisfaction of positive
definiteness A.2 for W = F ◦ U reduces to demonstration that U satisfies positive definiteness.

3.5.2 Positive definiteness of U

In this section it is demonstrated that the constructed signed symmetric sequences (24) of
generalized functions U from (67) with (54) provide degenerate scalar products (21) for P and
thus satisfy positive definiteness A.2.

The construction (67) of U as exp ◦(CU) and that a positively weighted summation of gener-
alized functions that provide degenerate scalar products provides a degenerate scalar product,

(aT + bV)(f∗, f) = aT (f∗, f) + bV(f∗, f) ≥ 0

if a, b > 0, section 3.5.1, provides that the scalar product from U satisfies positive definiteness if
the scalar products from (CU◦)ℓ are positive definite. Then, since the ◦-product preserves signed
symmetry, section 3.4.4, and the ◦-product preserves nonnegativity of signed symmetric factor
sequences, section 3.5.1, a demonstration of the nonnegativity for CU suffices to demonstrate
the nonnegativity of U . From section 3.4.4, the number of terms in the expansion (66) of Uk,n−k
is finite, and the sequences f ∈ P are terminating.

From substitution of (55) into (54).

CUn,m({1, n+m}) :=
∑
π1

σ(π1, (κ)n+m)

(∑
π2

σ(π2, (κ)n+m) ũn,m(π2(π1({1, n+m})))

)
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with

ũn,m((p)n+m)(κ)n+m
:=

∫∫
dσ(λ)

du

(2π)4
λn+m

n+m∏
j=1

e−ipju δ(p2j − λ
−2
cj )

d

dρj

× exp(
∑

a,b∈Jn,n+m

ρaρbHκaκb
(pa, pb))

(74)

from (55). Then from (50), CU(f∗, f) ≥ 0 if u(f∗, f) ≥ 0 with

u(f∗, f) =
∑
n,m

∑
(κ)n+m

∫
d(p)n+m (D·)nũn,m((p)n+m)(κ)n+m

×f̃n(−pn, . . .− p1)κn...κ1 f̃m(pn+1, . . . pn+m)(κ)n+1,n+m

(75)

using the scalar product (21). This scalar product is expressed using Fourier transforms (16)
from Parseval’s equality (17), and (8) for ∗-dual functions. The Fourier transform (16) of a
∗-dual function is∫

d(x)n
(2π)2n

e−ip1x1 . . . e−ipnxnf∗((x)n)(κ)n
= (DT ·)nf̃n((−p)n,1)(κ)n,1

.

The factorization

(D·)n exp(
∑

a,b∈Jn,n+m

ρaρbHκaκb
) = exp(

n∑
b1>a1=1

ρa1ρb1(DBD
T )κa1κb1

)

× exp(

n+m∑
b2>a2=n+1

ρa2ρb2Bκa2κb2
) exp(

n∑
a3=1

n+m∑
b3=n+1

ρa3ρb3(DΥ)κa3κb3
).

from (58) of section 3.4.3 results in display of u(f∗, f) ≥ 0 [37]. Three types of factors are
distinguished. Substitution of the identity (40) into the definition (57) provides that

DB(p)DT = B(−p)†. (76)

The nonnegative matrixDM(s) = C†(s)C(s) from (39) and then substitution into (57) provides
that

DΥ(p) =

∫
dµΥ(s) e

−spC†(s)C(s). (77)

The momentum dependence of the H(p1, p2)κ1κ2 is in (56). The factor

exp(

n∑
b1>a1=1

ρa1ρb1(DBD
T )κa1κb1

) = exp(

n∑
b1>a1=1

ρa1ρb1B(−pa1−pb1)κb1
κa1

)
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after substitution of (76), the factor

exp(

n∑
a=1

n+m∑
b=n+1

ρaρb(DΥ)κaκb
) =

∞∑
N=0

1

N !

(
n∑
a=1

n+m∑
b=n+1

ρaρb(DΥ(−pa+pb))κaκb

)N

and the momentum dependence of the third factor is B(pa2+pb2). Then, linearity of summation
provides ∑

a

∑
b

xayb =

(∑
a

xa

)(∑
b

yb

)
(78)

and reordering finite summations with the integration in (77) results in

n∑
a=1

n+m∑
b=n+1

ρaρb(DΥ(−pa+pb)))κaκb
=

Nc∑
ℓ=1

∫
dµΥ(s)

(
n∑
a=1

ρae
spaC(s)ℓκa

)

×

(
n+m∑
b=n+1

ρbe
−spaC(s)ℓκb

)

using the definition of Hermitian transpose C(s)†. Then, in the second factor(
n∑
a=1

n+m∑
b=n+1

ρaρb(DΥ)κaκb

)N
=

Nc∑
ℓ1=1

∫
dµΥ(s1) . . .

Nc∑
ℓN=1

∫
dµΥ(sN )

×
N∏
ν=1

(
n∑

aν=1

ρaνe
sνpaνC(sν)ℓνκaν

) n+m∑
bν=n+1

ρbνe
−sνpbνC(sν)ℓνκbν

 .

With these substitutions into (74), u(f∗, f) is displayed as a linear combination with positive
weights of manifestly nonnegative terms. First, define

FN (λ, u, (s, ℓ)N ) :=
∑
n

∑
(κ)n

λn
∫
d(p)n f̃n((p)n)(κ)1,n

n∏
j=1

(
e−ipju δ(p2j − λ

−2
cj )

d

dρj

)

× exp(
n∑

b2>a2=1

ρa2ρb2B(pa2+pb2)κa2κb2
)

N∏
ν=1

(
n∑

aν=1

ρaνe
−sνpaνC(sν)ℓνκaν

)
.

This is evaluated at (ρ)n = 0 after differentiation. Then, with the order of the arguments of
the ∗-dual of f̃n returned to the order

p1, κ1, p2, κ2, . . . pn, κn
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from pn, κn, pn−1, κn−1, . . . p1, κ1 and with momenta reflected pj 7→ −pj for j ∈ {1, n} by rela-
beling summation variables, (75) is

u(f∗, f) =
∞∑
N=0

1

N !

∫∫
dσ(λ)

du

(2π)4

Nc∑
ℓ1=1

∫
dµΥ(s1) . . .

Nc∑
ℓN=1

∫
dµΥ(sN ) |FN (λ, u, (s, ℓ)N )|2

The n and the pj , κj , ρj within the two factors of FN (λ, u, (s, ℓ)N ) are independent variables,
labeled n, (p, κ)n and m, (p, κ)n+1,n+m in (75).

As a consequence of the factoring of the n ≥ 4 argument connected functions (58), u(f∗, f)
is expressed as a linear combination with positve coefficients of complex conjugate factors. The
measures du, dσ(λ) and dµΥ(s) are nonnegative. Then u(f

∗, f) is manifestly nonnegative. (28)
in section 3.2 provides that positive definiteness is preserved with implementation of elemental
stability A.7.

The CU satisfy A.1-7 and consequently define a realization of relativistic quantum physics.
These realizations are unphysical in the sense that free particles are not described by the states:
if the supports of the spacetime arguments of fn are isolated and widely space-like separated,
then the connectivity of the CU implies that the norm of these states approach zero: only states
with effectively overlapping supports have significant norms.

Finally, the CU(f∗, f) from (54) and (55) is nonnegative for function sequences P and con-
sequently U provides a degenerate scalar product (21). U is nonnegative and signed symmetric
as a consequence of the expansion (66) and the nonnegativity and signed symmetry preserv-
ing properties of the ◦-product. Then, the signed symmetry and nonnegativity of F , section
3.3.1 and appendix 6.9, provide that the construction W = F ◦ U is signed symmetric and
nonnegative. The constructed W satisfy the positive definiteness condition A.2.

3.5.3 Poincaré invariance

The Poincaré covariance of the constructed VEV is established in [37]. Invariance of the de-
generate scalar product (21) follows from the conservation of energy-momentum and properties
(43) of the representations of the Lorentz subgroup. Compliant example representations of the
Lorentz subgroup are included in section 3.3.2.

Poincaré invariance of likelihoods is that

⟨(a,Λ)g|(a,Λ)f⟩ = ⟨g|f⟩,

for Poincaré transformations (30),

(a,Λ)f̃n((p)n)(κ)n
:=

n∏
k=1

e−ipa (S(A)T ·)nf̃n((Λ−1p)n)(κ)n
.
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The scalar product (21), the Fourier transform (16), Parseval’s equality (17), and the dual of
functions (8) result in that

⟨(a,Λ)g|(a,Λ)f⟩ =
∑
n,m

∑
(κ)n+m

∫
d(p)n+m (D·)nW̃n,m((p)n+m)(κ)n+m

n+m∏
ℓ=1

e−ipℓa

×(S(A)T ·)ng̃n((−Λ−1p)n,1)κn,1
(S(A)T ·)n+1,n+mf̃m((Λ

−1p)n+1,n+m)(κ)n+1,n+m

in the matrix notation (9). Translation invariance is verified by noting that the support of

W̃k,n−k includes only the surface with p1 + p2 + . . . pn = 0, the surface with energy-momentum
conserved. For the constructed connected functions (46) in the cluster decomposition (60) with
(67) and (68), each factor in the products of connected functions include

δ(pi1 + . . . piℓ) . . . δ(piν + . . . pin)

with each pk appearing exactly once in the set of arguments. The consequent energy-momentum
conservation, p1 + p2 + . . . pn = 0, implements translation invariance.

Reordering summations, substitution of S(A)D = DS(A) from (43), the indicated substi-
tutions Λ−1pj 7→ pj for summation variables, and that the determinant of the Lorentz trans-
formation Λ is unity results in

⟨(a,Λ)g|(a,Λ)f⟩ =
∑
n,m

∑
(κ)n+m

∫
d(p)n+m (D·)n(S(A)·)n+mW̃n,m((Λp)n+m)(κ)n+m

×g̃n((−p)n,1)κn,1 f̃m((p)n+1,n+m)(κ)n+1,n+m

= ⟨g|f⟩

if
(S(A)·)nW̃k,n−k((p)n) = W̃k,n−k((Λ

−1p)n).

There is exactly one factor of S(A) for each field component argument κj and consequently
two factors of S(A) for every factor of M(pℓ)κjκℓ

or H(pj , pℓ)κjκℓ
in each term in Wk,n−k from

the composition (60) of connected functions and the constructions of sequences F and U from
connected functions, (44) and (67) with (54) and (55), respectively.

By construction, the Nc ×Nc matrices M(p) in (37) and the H(p1, p2) from (56) and (57)
transform with the same representation of the Lorentz subgroup. From the condition (43) and
that ((S(A)·)2M(p)) = S(A)M(p)S(A)T from (9),

S(A)M(p)S(A)T =M(Λ−1p)
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and then if H = B,

S(A)H(p1, p2)S(A)
T =

∫
dµB(s) e

is(p1+p2)S(A)M(s)S(A)T

=

∫
dµB(s) e

is(p1+p2)M(Λ−1s)

=

∫
dµB(s

′) eis
′Λ−1(p1+p2)M(s′)

= H(Λ−1p1,Λ
−1p2)

and if H = Υ,

S(A)H(p1, p2)S(A)
T =

∫
dµΥ(s) e

s(p1−p2)S(A)M(s)S(A)T

=

∫
dµΥ(s) e

s(p1−p2)M(Λ−1s)

=

∫
dµΥ(s

′) es
′Λ−1(p1−p2)M(s′)

= H(Λ−1p1,Λ
−1p2)

from the Lorentz invariance of the measures dµB(s) and dµΥ(s), the substitution s′ = Λ−1s
for the summation variable, the Lorentz invariance of the Minkowski signature ΛT gΛ = g, and
that ps := pT gs is a Lorentz scalar. The generalized functions δ(pi1 + . . . pin) and δ(p

2
k − λ

−2
ck )

are Lorentz scalars. These three cases, each κj uniquely associates with a factor of M , B or
Υ, apply in every term of the expansion (60) with (44), (67), (54) and (55). Each factor of M
or H introduces paired indices κa, κb with a ̸= b, and as a consequence, with the exception of
Lorentz scalar fields, only even order VEV appear in the constructions.

As a consequence of the conservation of energy-momentum, and representation of the
Lorentz subgroup by S(A) and Dirac conjugation D that satisfies (43), the constructed VEV
provide a Poincaré invariant scalar product (21) that satisfies relativistic invariance A.3.

3.5.4 Cluster decomposition

Satisfaction of the strong form of cluster decomposition A.6 follows from the connectivity of the
truncated functions (71) in the cluster expansion (70). This is an established result in RQFT
[9] but the constructed U do not generally satisfy formal Hermiticity W.a nor totality W.b.
Satisfaction of cluster decomposition A.6 is demonstrated in this section. The demonstration is
that for functions supported on distantly space-like separated volumes, scalar products factor.

W(ψ∗ × g∗, φ× f)→W(ψ∗, φ)W(g∗, f),

from (27) as the supports of ψ,φ become arbitrarily distantly space-like separated from the
supports of g, f .
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Linearity of summations and relabeling the summation variables in the scalar product
W(ψ∗, φ) from (21) labeled by n,m and (x, κ)n+m, and inW(g∗, f) labeled by ℓ, k and (y, µ)ℓ+k
results in

W(ψ∗, φ)W(g∗, f) =
∑
n.m

∑
ℓ,k

∑
(κ)n+m

∑
(µ)ℓ+k

∫∫
d(x)n+md(y)ℓ+k

×(D·)n Wn,m((x)n+m)(κ)n+m
(D·)ℓ Wℓ,k((y)ℓ+k)(µ)ℓ+k

×ψn((x)n,1)(κ)n,1
φm((x)n+1,n+m)(κ)n+1,n+m

gℓ((y)ℓ,1)(µ)ℓ,1
fk((y)ℓ+1,ℓ+k)(µ)ℓ+1,ℓ+k

.

(79)

The ×-product of function sequences (4), the ∗-dual of function sequences (8), and relabeling
summation variables with the same designations for ψ,φ and g, f as (79) produces

W(ψ∗ × g∗, φ× f) =
∑
n.m

∑
ℓ,k

∑
(κ)n+m

∑
(µ)ℓ+k

∫∫
d(x)n+md(y)ℓ+k

×(D·)n+ℓ Wn+ℓ,m+k((x)n, (y)ℓ, (x)n+1,n+m, (y)ℓ+1,ℓ+k)((κ)n,(µ)ℓ,(κ)n+1,n+m,(µ)ℓ+1,ℓ+k)

×ψn((x)n,1)(κ)n,1
φm((x)n+1,n+m)(κ)n+1,n+m

gℓ((y)ℓ,1)(µ)ℓ,1
fk((y)ℓ+1,ℓ+k)(µ)ℓ+1,ℓ+k

.

(80)

The assignment of summation variables is a partition of arguments into two subsets P with
spacetime arguments (x)n+m and P ′ with spacetime arguments (y)ℓ+k suitable to test satisfaction
of cluster decomposition (27). To test the cluster decomposition (27), the supports of the ψn, φm
are taken to be arbitrarily space-like separated from the support of the gℓ, fk: every xj ∈ P can
be considered as arbitrarily space-like separated from every yj′ ∈ P ′.

In this notation, the construction (70) of W has elements

Wn+ℓ,m+k((x)n, (y)ℓ, (x)n+1,n+m, (y)ℓ+1,ℓ+k)((κ)n,(µ)ℓ,(κ)n+1,n+m,(µ)ℓ+1,ℓ+k) = (exp ◦(CW))n+ℓ,m+k

with the indicated association of arguments

(x, κ)n, (y, µ)ℓ, (x, κ)n+1,n+m, (y, µ)ℓ+1,ℓ+k ↔ (x, κ)1,n+m+ℓ+k

on the right- and left-hand sides, respectively. The number of the ∗-dual function arguments
is designated n and m designates the number of the function arguments in (x, κ)n+m. The
remaining arguments are in (y, µ)ℓ+k.

If

Wn+ℓ,m+k((x)n, (y)ℓ, (x)n+1,n+m, (y)ℓ+1,ℓ+k)((κ)n,(µ)ℓ,(κ)n+1,n+m,(µ)ℓ+1,ℓ+k)

=Wn,m((x)n+m)(κ)n+m
Wℓ,k((y)ℓ+k)(µ)ℓ+k

,

when the supports of every xj ∈ P is arbitrarily space-like separated from the support of every
yj′ ∈ P ′, then cluster decomposition is demonstrated.
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The elements of the sequence CW from (46) are connected, and due to the great space-like
separations of the (x)n+m from the (y)ℓ+k, any factor of CWν1,ν2 in any term of the expansion
(66) for (exp ◦(CW))) is zero unless the arguments are all from (x, κ)n+m or are all from
(y, µ)ℓ+k. Then, designate

δP ((x)n+m, (y)ℓ+k) =

{
1 if all arguments are ∈ P
0 otherwise

(81)

and similarly for P ′. Arguments P are arguments of ψn, φm and arguments P ′ are arguments
of gℓ, fk in the evaluation (80) of W(ψ∗× g∗, φ× f). Then, in the context of the scalar product
(80),

W = exp ◦(CW)

= exp ◦(δPCW + δP ′CW)

= (exp ◦(δPCW)) ◦ (exp ◦(δP ′CW))

= (δPW) ◦ (δP ′W)

(82)

from the construction (70) and the identity (69). δPV designates the sequence (24)

(V0.0, δP (x1)V1,0(x1)κ1 , . . . , δP ((x)n+m)Vn,m((x)n+m)(κ)n+m
, . . .).

The factors of the elements of the sequence δPW have common spacetime arguments, and
the designation of arguments as P or P ′ is established in the evaluation of (80). From (81),
partitions that transpose P arguments with P ′ arguments do not contribute in the ◦-product
(62) in the last line of (82). From W0,0 = 1 and the identity (64) for the ◦-product (62),
identification of the elements of the sequence W in (82) produces

Wn+ℓ,m+k((x)n, (y)ℓ, (x)n+1,n+m, (y)ℓ+1,ℓ+k)((κ)n,(µ)ℓ,(κ)n+1,n+m,(µ)ℓ+1,ℓ+k)

=Wn,m((x)n+m)(κ)n+m
Wℓ,k((y)ℓ+k)(µ)ℓ+k

in the context of the scalar product (80). Substitution into (80) and comparison with (79)
completes the demonstration that for the construction (70) of W,

W(ψ∗ × g∗, φ× f)→W(ψ∗, φ)W(g∗, f)

as the supports of ψ,φ become arbitrarily distantly space-like separated from the supports of
g, f .

The cluster expansion (70) for W and the connectedness (46) of CW satisfy cluster decom-
position A.6.
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3.5.5 Regularity

Regularity A.1 states that the constructed VEV functions Wk,n−k((x)n)(κ)n
are generalized

functions from S ′(R4n). The construction, (60) with (65), (37), (44), (54) and (67), displays
the VEV as finite sums of products of connected functions (46) with factors that have no
arguments in common. Then, demonstration of regularity reduces to demonstration that the
n ≥ 4 argument connected functions are elements of S ′(R4n) since the two-point function (37) is
an element of S ′(R8). The n ≥ 4 argument connected functions from (46), CWk,n−k((x)n)(κ)n

,
are products of elementary generalized functions but since products are not generally defined,
these particular products must be justified.

To satisfy regularity A.1 for the physically nontrivial realizations, elemental stability A.7
is adopted. Elemental stability is implemented in (28) and the Qk,2n−k((p)2n)(κ)2n

in (55)
describes interaction without introduction of a singular contributions from the extrapolation of
CUk,2n−k to 2n = 2 [33, 37]. For functions in P and without vacuum polarization, conservation
of energy sets all contributions fromW0,n to zero if n ≥ 2. If kinematic constraints, for example,
conservation of energy and angular momentum, preclude decay of isolated elementary particles,
then satisfaction of formal Hermiticity W.a is consistent with W1,n−1(f

∗
1 fn−1) = 0. More

generally, setting W1,n−1(f
∗
1 fn−1) = 0 is inconsistent with formal Hermiticity but generally

implements regularity A.1 and positivite definiteness A.2 in the constructions.
Whether the connected functions CWk,n−k((x)n)(κ)n

are continuous linear functionals from
S ′(R4n) rests on whether the summations over the indicated submanifolds of (p)n ∈ R4n in
(46) are regular. The submanifolds are determined by Dirac delta functions in the connected
functions (46). Each energy-momenta pj lies on a mass shell and energy-momentum is con-
served. If the singularities of H(p1, p2) lie beyond the support of the Dirac delta functions,
then their singularities are not a consideration. Contrasted with the neutral scalar field exam-
ples discussed in [33], multiple component fields introduce distinct elementary masses mκ and
H(p1, p2) with singularities. There are no nontrivial finite Lorentz invariant measures [9] and
as a consequence, B(p) and Υ(p) from (56) with (57) are either constant or diverge at p = 0.
From (57), nonconstant B(p) are at least as singular as the Pauli-Jordan function [54]. From
the singularities of the Pauli-Jordan function [9], and noting the Fourier transform property
(18) and that the M(p) in (56) are multinomials of the energy-momentum components, the
B(p) are as singular as

B(p) ≈ dk

dpk

(
a δ(p2) +

b

p2

)
(83)

in a neighborhood of p2 = 0 and k > 0 for nonzero spins. A constant H(p1, p2) results from
dµH(s) = cδ(s)ds with H = B,Υ. The energy-constrained support of functions from P suffices
to exclude the singularities of H(p1, p2) from consideration in satisfaction of regularity A.1. The
singularity of B(pj + pk) is encountered only when pj is the argument of a ∗-dual of a function
(Ej = −ℏcωj) and pk is the argument of a function (Ek = ℏcωk). In these instances, the points
(pj + pk)

2 = 0 would be within the support of the summations that define the scalar product
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(21). However, the selected form (55) with (56) includes only energy-momentum support pj , pk
with either both Ej , Ek > 0 or both Ej , Ek < 0. Then (pj + pk)

2 > m2
κj
c2 +m2

κk
c2. Similarly

for Υ(−pj + pk), the singularities are encountered only if both arguments are associated with
a function or both are associated with the ∗-dual of a function. The form (56) is selected to
exclude the singularities of H(p1, p2) from the support of the summations that evaluate scalar
products (21) [37].

In this section, the number of spacetime dimensions is considered and is designated d.
Each connected function (46) in the constructions is supported solely on submanifolds with

energy and momentum conserved. After evaluation of the mass shell delta functions and with
consideration of the zeros in the energy support of functions in P and P∗, the Fourier transforms
of the n ≥ 4 connected functions include only momenta on the manifold defined by

n∏
j=1

1

2ωj
δ(ω1 . . .+ ωk − ωk+1 . . .− ωn) δ(p1+p2 . . .+pn) (84)

with

ωj =
√
λ−2
cj + p2

j

from (13). Factors of 1/(2ωj) are multipliers of tempered functions for finite masses and are
not considered further. Within the submanifold of R3n with momentum conserved,

pn = −p1 . . .− pn−1. (85)

Energy conservation is δ(Ek((p)n)) with

Ek((p)n) :=

k∑
j=1

ωj −
n∑

j=k+1

ωj :=

n∑
j=1

sjωj . (86)

δ(Ek((p)n)) defines a generalized function except possibly for points on the surface Ek((p)n) = 0
with a vanishing gradient, ∇Ek((p)n) = 0 [19].

sj :=

{
−1 if j ∈ {k + 1, n}
1 otherwise.

Next, the singularities of δ(Ek((p)n)) are identified.
The components of the gradient ∇Ek((p)n) within the submanifold with momentum con-

served are

dEk((p)n)

dpj
= sj

dωj
dpj
− dωn
dpn

dpn
dpj

= sj
pj
ωj

+
pn
ωn

(87)
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from (86) with d − 1 dimensional momentum vectors pj , the constrained pn from (85), and
j ∈ {1, n − 1}. Summing squares provides that when the gradient vanishes, p2

j/ω
2
j = p2

n/ω
2
n.

Then, substitution of ωj provides that the gradient vanishes if and only if

sj
pj
mκj

= − pn
mκn

for each j ∈ {1, n− 1} and with the constrained pn from (85). Then both the function and its
gradient vanish,

Ek((p)n) = ∇Ek((p)n) = 0,

only if
n∑
j=1

sjmκj = 0 (88)

from
pj = −sj

mκj

mκn

pn

at the zeros. A neighborhood of those points with a zero energy and vanishing gradient is

pj
mκj

= sj
p1

mκ1

+ ej

with ∥ej∥ < ϵ≪ 1, 0 < ∥p1∥ and j ∈ {2, n− 1}. In this neighborhood,

pn = −
n−1∑
j=1

pj = −
mκn

mκ1

p1 −
n−1∑
j=2

ej

using (88) and

ωj ≈
mκj

mκ1

ω1 + sjmκj

p1 · ej
ω1

+mκ1mκj

e2j
2ω1
−mκ1mκj

(p1 · ej)2

2ω3
1

to second order in small quantities and with en := −
∑n−1

j=2 ej and for j ∈ {2, n}.
On the submanifold with momentum and energy conserved, and within a neighborhood of

the points where the gradient ∇Ek((p)n) equals zero,

Ek((p)n) ≈
mκ1

2ω3
1

n∑
j=2

sjmκj

(
ω2
1 e2j − (p1 · ej)2

)
:=

R2

2ω3
1

(αp2
1 + βm2

κ1)
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from (88), polar coordinates for the (n− 2) spatial vectors ej , and with the definitions

R2 :=
n−1∑
j=2

e2j ,

u1 := p1/∥p1∥ and

αR2 := mκ1

n∑
j=2

sjmκj

(
e2j − (u1 · ej)2

)
, βR2 := mκ1

n∑
j=2

sjmκj e
2
j .

The result is that energy conservation (84) defines a generalized function except possibly for
the points with the gradient ∇Ek((p)n) vanishing when Ek((p)n) = 0, the points with R = 0.
A lack of coinciding singularities provides that

δ(Ek((p)n)) = δ( R
2

2ω3
1

(αp2
1 + βm2

κ1))

=
2ω3

1

R2 δ(αp2
1 + βm2

κ1) +
2ω3

1

αp2
1 + βm2

κ1

δ(R2).

Since (84) is a generalized function for R > 0, δ(αp2
1 + βm2

κ1) is regular.
For n ≥ 4 and a sufficient number of dimensions d, the singularities of the energy-momentum

conserving delta functions (84) are locally summable for the regular selection (56) of H(p1, p2).
The Jacobian for the polar coordinates for (e)2,n−1 contributes R(d−1)(n−2)−1 in d spacetime
dimensions for the nth order connected functions. Then, the summations in evaluation of the
degenerate scalar product (21) include

R(d−1)(n−2)−1

R2
dR = R(d−1)(n−2)−3 dR

in the neighborhood of the singularities and d ≥ 3 suffices for the summations to converge and
the constructed W to be continuous linear functionals dual to tempered functions. Terms

R(d−1)(n−2)−1δ(R2)

do not contribute for n ≥ 4, d ≥ 3 [19]. d ≥ 3 suffices for finite masses mκj and d ≥ 4 includes
massless particles [36].

To include massless particles, mκ = 0, the development follows the massive case except that
new singularities are encountered. The positive and negative mass shells intersect at p2 = 0,
and ω−1 and the derivatives of ω =

√
p2 diverge at p2 = 0. Selection of basis function spaces

with Fourier transforms with infinite order zeroes at each p2
j = 0 regularizes the development
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[36]. With massless particles, a neighborhood of the points with a vanishing gradient (87) is
defined by

pj√
p2
j

= sj
p1√
p2
1

+ ej

with the constraint
e2j + 2sj

p1 · ej√
p2
1

= 0.

Unlike the massive particle case, the perturbations ej must preserve the unit lengths of pj/
√

p2
j .

The constraint to unit length reduces the number of degrees of freedom in the summation over
(e)2,n−1. In polar coordinates, the summation contributes R(d−2)(n−2)−1 and as a consequence,
d = 4 is required to satisfy regularity with the inclusion of massless particles.

Finite masses, the regular selection (56) for the arraysH(p1, p2) and three or more spacetime
dimensions d suffice for the constructed W to satisfy regularity A.1. Inclusion of massless
elementary particles requires four or more dimensions [36].

3.5.6 Summary of constructions

The construction of VEV functionsW from connected functions (46), (60) with (37), (44), (54)
and (67), suffices to satisfy conditions A.1-7. The constructions are explicit example nontrivial
realizations of relativistic quantum physics. The constructed VEV satisfy A.1-7 for states
described by function sequences from HP , the completion in the Hilbert space norm (20) of the
basis function spaces P (89). Or equivalently, the construction is for function sequences from
S with modified VEV, section 3.7.2. For the constructed VEV:

A.1: Demonstrations of regularity apply if the factors Qk,2n−k((p)2n)(κ)2n
in the connected

functions (46) are polynomially bounded growth, locally Lebesgue-summable functions of
the energy-momenta over the appropriate domains (36), masses are finite, and the number
of spacetime dimensions equals or exceeds three (2+1). Massless particles require four
(3+1) or more spacetime dimensions and additional constraints on P, [36] and section
3.5.5. Regularity requires that the singularities of nonconstant H(p1, p2) in the VEV (67)
with (54) and (55) are excluded from the support of the scalar product (21), and that the
divergent extrapolation of the connected functions (54) to two-point function is eliminated
(28). A demonstration of regularity for finite masses is in section 3.5.5.

A.2: The nonnegativity of the scalar product (21) determined by the composition (60), W =
F ◦U , follows from the nonnegativity of the signed symmetric (48) constituent sequences
of generalized functions F and U , section 3.5.1. The positive definiteness of F is well
established and is demonstrated in appendix 6.9. The nonnegativity of U is demonstrated
in section 3.5.2 and follows from the nonnegativity of CU , the cluster decomposition (67),
and that the ◦-product preserves the nonnegativity of signed symmetric sequences.
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A.3: Section 3.5.3 includes a demonstration of relativistic invariance (29). Relativistic invari-
ance follows from the relativistic covariance of F and the expansions (54), (55) and (67)
for U . The S(A), M(p) and D from the underlying free field F establishes the real-
ization of the Lorentz subgroup for a construction. Translation invariance follows from
energy-momentum conservation.

A.4: The limitation of the support of VEV to mass shells together with the zeros (11) on
negative energy mass shells in the support of the functions from the basis spaces P
implements the spectral support condition. In the evaluation of scalar products (21),
either

pj + pj+1 . . .+ pn ∈ V
+

explicitly since each pℓ ∈ V
+
, or energy-momentum conservation provides that this sum of

energy-momenta is the negative of p1+p2 . . .+pj−1 with each of p1, . . . pj−1 explicitly in the
closed backward cone. The cones are closed under addition of elements. Demonstrations
of spectral support are included in [33, 37].

A.5: For constructions based on function sequences P from section 3.7, local commutativity
follows from the signed symmetry of the constructed VEV (60). The ◦-product provides
a signed symmetric (48) product of signed symmetric sequences.

A.6: Cluster decomposition follows from the connectedness of the functions CW in (46) and
the cluster expansion (70) for the VEV functions W. The demonstration of cluster de-
composition is in section 3.5.4.

A.7: VEV function sequences that satisfy A.1-6 determine sequences W that also satisfy el-
emental stability A.7, (28). Elemental stability follows for mean zero fields if Wk,0 =
W0,k = Wk,1 = W1,k = 0 for k ≥ 2. For mean zero fields, W1,0 = W0,1 = 0. If kinematic
constraints do not suffice to satisfy elemental stability, then the constructions must violate
formal Hermiticity W.a. The introduction of vacuum polarizations preserves satisfaction
of A.1-7 with the appropriately restated A.7, section 3.4.5.

For the example constructions, avoidance of the singularities of H(p1, p2) to implement
regularity (56) generally precludes formal Hermiticity W.a for the physically nontrivial con-
structions. The revised quantum-classical correspondence does not require Hermitian fields in
the VEV (5). Free fields, Wick polynomials of free fields and generalized free fields satisfy formal
Hermiticity W.a with a basis function space S. Satisfaction of A.1-6 with formal Hermiticity
W.a and totality W.b appears to be peculiar to physically trivial VEV.

Generalizations to these constructions include odd order scalar field VEV [33], compositions
that add connected functions F ◦ U ◦ U ′, additional forms in the expansion (58) of connected
functions in terms of the matrices B(p) and Υ(p), extension of dµB(s) to complex-valued
measures [33, 35], and massless particles, [36] and section 3.5.5.
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3.6 Relation to free fields

The cluster expansion (65) and the connectedness of the VEV functions provide that the con-
structed realizations of RQP are described by free fields when the supports of each argument
of the state describing functions are isolated (105). The connectedness and that at least two
∗-dual arguments and at least two function arguments appear in each contributing factor of
CUk,n−k provides that the contributions of the constructed Wk,n−k reduce to contributions of
Fk,n−k if the support of each argument of the state describing functions f are sufficiently widely
space-like separated. In these instances, the states are readily interpreted as consisting entirely
of (nearly) free particles: the scalar products of states with the support of each argument suffi-
ciently widely space-like separated and localized nearly equal the scalar products for free fields.
The two-point in (46) is a free field two-point function.

⟨Φ(f)Ω|Φ(g)Ω⟩ = ⟨Φo(f)Ωo|Φo(g)Ωo⟩o

with Φ(f) the constructed quantum field (25) and Φo(f) the free field of the same elementary
masses mκ, ⟨f |g⟩ is the scalar product (21) using the constructed VEV and ⟨f |g⟩o is the free
field, Fock space scalar product. These “macroscopic” state describing functions, with reliably
distinguishable support, behave as particles with corresponding classical descriptions that sat-
isfy Newtonian mechanics with −g/r pair potentials in first approximation for nonrelativistic
relative velocities and over brief intervals, section 4.

3.7 The basis function spaces

3.7.1 The basis function spaces P

A choice of basis function spaces P admits nontrivial VEV realizations that are unavailable in
Wightman’s original development of relativistic quantum physics [56, 62]. Wightman selected
the Schwartz tempered test functions S and in this development, unrealizable constraints on
VEV are relaxed by placing constraints on the function space. Wightman’s selection of functions
treats time similarly to space, and requires that the field operators that appear in the VEV
(5) are Hermitian. In the constructions, time is distinguished: the functions in P have Fourier
transforms with zeros on negative energy mass shells (11).
P consists of those tempered functions with Fourier transforms that vanish on the appro-

priate negative energy mass shells. The appropriate mass shell is determined for each field
component labeled κj by the mass mκj .

φn((x)n)(κ)n
∈ P(R4n)

if
φ̃n((p)n)(κ)n

= 0 when any energy Ej = −ℏcωj
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for j = 1, . . . n and

ℏcωj := ℏcω(pj) :=
√

(mκjc
2)2 + (ℏpj)2c2

from (13). The zeros are implemented using multiplier functions for tempered functions [20].
The functions φn ∈ P(R4n) in (11) are constructed

φ̃n((p)n)(κ)n
:=

n∏
j=1

(pj0 + ωj) f̃n((p)n)(κ)n
(89)

with fn ∈ S(R4n). This is abstracted as

P̃ := (p0 + ω)S̃

using (89) and with φ0 = f0 ∈ C. The factors (pk0 + ωk) are multipliers of tempered test
functions since they are infinitely differentiable and polynomially bounded in magnitude [20].
The remaining issue is whether A.3 is satisfied: whether P is closed under Poincaré transfor-
mations (30). The Lorentz invariance of p2 and that (a,Λ)g̃n ∈ S(R4n) for every g̃n ∈ S(R4n)
provides that P is stable under Lorentz transformations. Indeed, the Lorentz invariance of p2

provides that a zero of the appropriate form (89) is stable with proper, orthochronous Lorentz
transformation,

p′
0,j + ω′

j = (0,Λ)(pj0 + ωj) = (pj0 + ωj)
(pj0 − ωj)

(0,Λ)(pj0 − ωj)

for the Poincaré transformation (a,Λ). The final factor is regular in a neighborhood of the
negative energy mass shell. The Poincaré transformation of functions is from (30).

HP includes states characterized by Cauchy sequences of functions in P convergent in the
Hilbert space norm (20). For the constructions, these include functions

φ̃n((p)n)(κ)n
=

n∏
j=1

(pj0 + ωj) g̃n((p)n)(κ)n
)

with gn ∈ S(R3n) and, as a consequence, HP includes states characterized by functions (227)
with point support over time [33]. The functions used by Lehmann, Symanzik and Zimmermann
to isolate the creation component of a field operator in their developments of scattering for
RQFT [9] are included in HP . As a consequence, LSZ expressions for scattering amplitudes
readily adapt to the constructions. Explicit scattering amplitudes are presented in section 3.9
and [31, 33, 35, 37].

The Hilbert space completion of P includes no strictly localized states [33] but there are
essentially localized states. Functions of the form (89) are not of bounded spatial support.
The essentially localized states include states arbitrarily dominantly supported within bounded
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volumes, appendix 6.14, yet with tails that do not identically vanish within any finite volume.
Functions of the form (89) are anti-local [45, 53]. The tails of the functions that describe
states can be physically negligible since minor support corresponds to unlikely and effectively
unrepeatable observations.

Selection of the basis function spaces P overcomes the challenge of discovering VEV within
S ′ that satisfy the physical conditions of RQP for all functions from S. This long-standing
problem remains without a resolution [2, 4, 9, 30, 39, 41, 56, 59]. The realizations of rela-
tivistic quantum physics discussed here are admitted by elimination of canonical quantization’s
assertion that quantum fields (25) are elevations of corresponding classical fields and, as a con-
sequence, must be Hermitian. The lack of real functions within the completion of P precludes
Hermitian field operators but does not preclude an appropriate correspondence of classical and
quantum dynamics.

3.7.2 An alternative formulation based on S

There is an equivalent formulation with VEV modified from the forms presented in sections
3.3.1 and 3.4 with the Schwartz tempered functions S as the basis function space. In the
equivalent formulation, the VEV are necessarily non-Hermitian when interaction is exhibited.
The equivalent formulation includes the physically trivial, conventional free field VEV. These
notes emphasize the development based on P. The two formulations are equivalent: basis
spaces P with the VEV displayed in (10) and section 3.4; or basis space S with augmented
VEV that are non-Hermitian if interaction is exhibited.

The equivalence derives from that the multiplier functions

ω ± p0
2ω

= θ(±p0)

on mass shells ℏ2p2 = m2c2 with θ(x) the Heaviside step function. The zeros in (89) that distin-
guish the subspace P from the tempered functions S are provided by these multiplier functions
that may alternatively be applied to the VEV. Application of the multipliers to the VEV
produces the equivalent formulation with the basis function space as the Schwartz tempered
functions S as a consequence of the assignment (89). In this equivalent, alternative formulation,
totality W.b is satisfied but formal Hermiticity W.a is abandoned to achieve interaction. With
the multipliers applied to the VEV rather than to the test functions, the generalized functions
become

Wk,n−k((x)n)(κ)n
7→

k∏
j=1

n∏
ℓ=k+1

(
−pj0 + ωj

2ωj

)(
pℓ0 + ωℓ
2ωℓ

)
Wk,n−k((x)n)(κ)n

. (90)

From section 3.4, the VEV have point support on energies on mass shells, δ(p2j −m2
κj
c2/ℏ2) for
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each j ∈ {1, n}, and
pj0 + ωj = 2ωjθ(pj0)

−pj0 + ωj = 2ωjθ(−pj0).

The resulting equivalence of formulations is:

VEV Basis space

Wk,n−k((x)n)(κ)n
P

k∏
j=1

θ(−pj0)
n∏

ℓ=k+1

θ(pℓ0)Wk,n−k((x)n)(κ)n
S.

(91)

The equivalence of formulations is interesting for an analogy with a result from Reeh and
Schlieder [45, 66]. The result of Reeh and Schlieder is that states described by (2) with Hermi-
tian field operators, states described by operating on the vacuum with powers of field operators
and functions φn((x)n)(κ)n

supported solely within an open and bounded region χ, are dense
in the entire Hilbert space and not just dense for states supported within the same bounded
region χ. Although the theorem of Reeh and Schlieder is demonstrated for RQFT and not
A.1-7, the equivalent formulations in (91) display the same puzzlement with states character-
ized by functions of bounded support but an inferred global support of state descriptions. The
formulation with states labeled by the anti-local functions in P is equivalent to a formulation
that includes states labeled by functions of bounded support in S. Anti-local functions have
global support in the sense that they do not vanish over any finite volume. The equality (91)
demonstrates that the more evident anti-locality of the formulation based on P is also exhib-
ited in the formulations based on S: this suggests that anti-locality is implicit in relativistic
quantum physics.

3.8 Properties of the constructed quantum fields

In this section, the Hamiltonains for the constructions are discussed and it is demonstrated that
the fields Φ(f) constructed in section 3.4 are unbounded Hilbert space operators, and that the
fields Φ(f) are not Hermitian if they are physically nontrivial.

As a consequence of the limitation of the momentum support of the VEV to mass shells
and that the intersection of the supports of the VEV with the support (11) of functions from
P includes only positive energies, the Hamiltonian, the generator of time translations of a state
describing function, derives from the single-argument subspace operator (32).

e−ipj0λ = e−iωjλ (92)
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using (13) and the translation is by λ = ct. This follows from (32) with the Fourier transform
(16). In an n-argument subspace of HP ,

U(λ) =
n∏
j=1

e−iωjλ (93)

implements temporal translation. The
∑n

j=1 pj in n-argument subspaces are densely defined
Hermitian operators in the n-argument subspaces and correspond to total energy and mo-
mentum. Hermiticity follows from Poincaré invariance of the scalar product (21) and Stone’s
theorem [24]. In the subspace of the vacuum, n = 0, the Poincaré transformations (30) are
(a,Λ) = I. In multiple argument subspaces, an association of single argument subspace op-
erators with the classical dynamical variables of corresponding particles is generally not de-
termined. An association of the arguments of state describing functions with the properties of
classical particles necessarily applies only for appropriate functions, section 4.1, or for VEV that
lack interaction. The exhibition of interaction is described by the VEV (5): VEV determine the
Hilbert space scalar product (6) and consequently the likelihoods of observations. The n and
k-argument state describing functions are not orthogonal for n ̸= k with scalar products that
exhibit interaction. The evolution of state describing functions and the exhibition of interaction
are discussed further in sections 3.9 and 4.

Satisfaction of the axioms A.1-7 in section 3.2 suffices to define the constructed quantum
fields Φ(f) as Hilbert space operators. The quantum fields (25) are the multiplication (4) of
function sequences and this product preserves Hilbert space norm-equivalence classes. The
expansion (3) for states as products of the field applies for function sequences from P: the
domain of the field (25) includes this dense set of elements with HP . Demonstrated below, the
field is not a bounded operator and as a consequence, the field is at best only densely defined,
[24], section 5 and appendix 6.2.5.

For a sufficiently great space-like translation T and an element h of the null space of HP ,
satisfaction of cluster decomposition (27) in section 3.2 (axiom A.6) provides that

∥f × (g + Th)∥2 = ⟨f × g|f × g⟩+ ⟨f × g|f × Th⟩+ ⟨f × Th|f × g⟩+ ⟨f × Th|f × Th⟩
= ⟨f × g|f × g⟩+ ⟨f × g|f⟩⟨Ω|Th⟩+ ⟨Th|Ω⟩⟨f |f × g⟩+ ⟨f |f⟩⟨Th|Th⟩
= ⟨f × g|f × g⟩+ ⟨f × g|f⟩⟨Ω|h⟩+ ⟨h|Ω⟩⟨f |f × g⟩+ ⟨f |f⟩⟨h|h⟩
= ⟨f × g|f × g⟩
= ∥f × g∥2

from evaluation of the norm (20), linearity of the scalar product, translation invariance of the
scalar product (∥Th∥ = ∥h∥), the Cauchy-Schwarz-Bunyakovsky inequality (|⟨h|Ω⟩| ≤ ∥Ω∥∥h∥),
and ∥h∥ = 0. Elements of the null space are translationally invariant,

∥h− Th∥ = 0,



3 CONSTRUCTIONS OF RELATIVISTIC QUANTUM MECHANICS 68

a consequence of the Cauchy-Schwarz-Bunyakovsky inequality and the unitarity of translation
∥Th∥ = ∥h∥. Then, the field operators Φ(f) in (25) preserve equivalence classes of the Hilbert
space norm (20).

∥Φ(f) (g + h)∥ = ∥Φ(f) g∥

for any ∥h∥ = 0. Repetition of this argument with (f + h)× g demonstrates that the quantum
field Φ(f) is also independent of the representative used for the equivalence class of f ∈ HP .
The constructed fields are Hilbert space operators but the fields are not Hermitian for the
physically nontrivial constructions.

A quantum field Φ(f) (25) would be bounded if there is a real constant C such that
∥Φ(f)v∥ ≤ C ∥v∥ for all v ∈ HP , [46] and appendix 6.2.5. However, the fields Φ(f) (25)
are unbounded and consequently are not multiplier anywhere within HP , [46] and section 5,
and Φ(f)∗g ̸∈ HP if g ∈ HP .

A demonstration of unboundedness for a free boson field suffices for the constructions of
physical interest. Any construction that includes unconfined bosons includes the free boson
field VEV. Then, the cluster decomposition axiom A.6 in section 3.2 provides that the field
Φ(f) is unbounded if the free boson field is unbounded. For free bosons, the VEV functions
result from

Fk,k((x)2k)(κ)2k
=
∑
S

k∏
j=1

W2(xj , xij )κjκij

and are otherwise zero from (44) in section 3.3.1. For a product function,

fn := (0, 0 . . . ,

n∏
ℓ=1

f(xℓ)κℓ
, . . .),

application of (4) and (25) results in

Φ(f)fn = (0, 0 . . . , f(x1)κ1

n+1∏
ℓ=2

f(xℓ)κℓ
, . . .).

Then the norm (20) for the free boson field provides

∥fn∥2 = n!W2(f
∗, f)n

and
∥Φ(f)fn∥2 = (n+ 1)!W2(f

∗, f)n+1

with

W2(f
∗, f) :=

Nc∑
κ1=1

Nc∑
κ2=1

W2(f
∗
κ1 fκ2)κ1κ2
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from (21). Then
∥Φ(f)fn∥2

∥fn∥2
= (n+ 1)W2(f

∗, f) > C2

for any finite real constant C, some n ∈ N and some fn ∈ HP . The constructed quantum fields
Φ(f) are unbounded.

For VEV that satisfy formal Hermiticity W.a, the adjoints of the field (25) are readily
evaluated. If the development also satisfies totality W.b, then the quantum fields are densely
defined Hermitian Hilbert space operators. In Wightman’s development or if formal Hermiticity
W.a applies to a construction in this note, the definition of an adjoint results in the identification

⟨Φ(f)∗h|g⟩ = ⟨h|Φ(f)g⟩
=W(h∗, f × g⟩
=W (h∗ × f × g⟩
=W ((f∗ × h)∗ × g⟩
= ⟨Φ(f∗)h|g⟩

(94)

with f = (0, f(x1)κ1 . . . f(x1)κNc
, 0, 0, . . .) from section 3.1.3. This identification follows from

the definitions of scalar product (21) and quantum field (25), the product of function sequences
(4), and properties of the ∗-dual of sequences (8).

W(f∗, g) =W (f∗ × g)

is formal Hermiticity W.a. Then, for VEV that satisfy formal Hermiticity W.a, the adjoint of
the field is

Φ(f)∗ = Φ(f∗).

For VEV that satisfy formal Hermiticity W.a, the field is Hermitian, Φ(f)∗ = Φ(f), for real
function sequences f∗ = f . This defines a real sequence as f∗ = f . In Wightman’s original
development [9, 33], totality W.b applies and the basis space of functions is the ∗-involutive
S = S∗. With complex coefficients, real functions are dense in S: every h ∈ S decomposes as

h = h1 + ih2

for real h1, h2 ∈ S, 2h1 = h+ h∗ and 2h2 = −i(h− h∗). For VEV and function sequences that
satisfy Wightman’s axioms, the field is densely defined and Hermitian. These VEV include the
physically trivial free fields.

For constructions based on the support constrained function sequences P, any real function
sequence f with f0 = 0 is in the equivalence class of zero, [33] and section 3.7. For f ∈ P and
VEV that satisfy formal Hermiticity W.a,

Φ(f)∗g = f∗ × g ̸∈ P
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unless g = 0 since P ∩ P∗ = {(c, 0, 0 . . .)} with c ∈ R. P includes too few functions for the
∗-dual to be an automorphism. The constructed physically nontrivial fields are not Hermitian
even if formal Hermiticity is satisfied due to the necessity of limited support for P to implement
nonnegativity of energies (11) and include higher order connected functions such as (10). The
support constraints imply that the algebra of function sequences P is not ∗-involutive and
Φ(f)∗g ̸∈ HP if g ∈ HP . The identification in section 3.3.1 and [31] of creation and annihilation
operators for free fields illustrate this result. For f ∈ P(R4) and free field VEV, the field
operators Φo(f) in (25) equal the non-Hermitian creation operators Φ+

o (f). The adjoints of
Φ+
o (f) are the annihilation operators Φ−

o (f
∗) from (94). But, Φ−

o (f) = 0 for f ∈ P(R4) and
this precludes Hermiticity of the field, Φ+

o (f) = Φo(f) ̸= Φo(f
∗) = Φ−

o (f
∗) for the energy

support constrained functions f ∈ P(R4) [31].
Generally, densely defined Hermitian adjoints of the quantum fields are precluded by axiom

A.7. For physically nontrivial constructions, axiom A.7 is generally required to implement
positive definiteness A.2 with regularity A.1: the divergent two-point function that results from
extrapolation of (54) is eliminated using (28). If the quantum fields in (5) were Hermitian, then
A.7 provides that

⟨Φ(fn)∗ . . .Φ(f2)
∗Φ(f1)

∗Ω|g⟩ = ⟨Φ(fn) . . .Φ(f2)Φ(f1)Ω|g⟩

= ⟨Φ(f1)∗Ω|Φ(f2) . . .Φ(fn)g⟩

= ⟨Φ(f1)Ω|Φ(f2) . . .Φ(fn)g⟩

= ⟨Φ(f1)Ω|f2 × . . . fn × g⟩

= 0

(95)

from the definition of adjoint operator and the assumed Hermiticity. Then, repeating the
development with any number of factors, A.7 implies that any power of the quantum field
vanishes if Hermitian field operators were realized. No nontrivial quantum field is Hermitian if
A.1-7 are satisfied. A.7 is satisfied for free field VEV if the basis function sequences are limited
to P: the free field VEV (44) extend to (38) with the extension of P to S.m

Do realizations with VEV such as (10) exhibit interaction “at a point” or are they string
theories? Of course, such geometric characterizations are not intrinsic to quantum mechan-
ics but are motivated by a predisposition for classical description. Neither functions of point
support nor functions of string support are included among the state describing functions in
the constructions. The constructed Hamiltonians (92) generate temporal translations in the
Hilbert space realizations of the Poincaré group. The Hamiltonian is determined by realization
of the Poincaré group rather than a correspondence with the classical dynamics of points or
strings. These Hamiltonians coincide with what is identified in the canonical formalism as free

mIn RQFT, if Φ(f)Ω = 0 for a dense set of real functions f = f , then Φ(f) = 0, (lemma 20.1 [9]). A.7 is
expressed with the necessarily complex functions f ∈ P.
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field Hamiltonians even though interaction is manifest, sections 3.9 and 4, and [31, 33, 35]. The
constructed VEV are solutions to the Klein-Gordon equation yet exhibit interaction. Mass shell
singularities of the VEV together with a lack of constraints that set momenta equal in pairs
result in nontrivial scattering. Canonical formalism-compliant solutions to the Klein-Gordon
equation necessarily exhibit trivial physics. The Jost-Schroer theorem [9, 56] states that if
quantum fields, the Φ(x)κ in VEV (5), satisfy both the original Wightman axioms and the
Klein-Gordon equation, then the fields Φ(x)κ are free fields. The Jost-Schroer theorem does
not apply with the revised axioms: interacting quantum fields are not necessarily densely de-
fined Hermitian Hilbert space operators. The constructed scattering amplitudes that coincide
with Feynman series at weak coupling demonstrates that solutions to the Klein-Gordon equa-
tion are of interest. For VEV that are solutions to the Klein-Gordon equation, interaction is
inconsistent with Hermitian field operators. This suggests that interacting relativistic fields
are precluded by canonical quantization’s quantum-classical correspondence. The construc-
tions suggest a strengthening of the Haag (Haag-Hall-Wightman-Greenberg) theorem to that
Poincaré covariance, locality and positive energies together with an exhibition of interaction
preclude Hermitian field operators.

The pressure for conformity is enormous. I have experienced it in editors’ rejection
of submitted papers, based on venomous criticism of anonymous referees. The
replacement of impartial reviewing by censorship will be the death of science. –
Julian Schwinger.

3.9 Scattering amplitudes

Interaction is exhibited in changes to momenta and particle numbers. A lack of orthogonality
of the descriptions of states with differing particle numbers and momenta implements inter-
action. From Born’s rule, scalar products (21) provide the state transition likelihoods and to
describe relativistic physics, these likelihoods must be Poincaré invariant. In the constructions,
although the time translation of an n-argument function is an n-argument function, with the
constructed scalar products, n-argument function do not necessarily correcpond to n elemen-
tary particles nor are the momenta necessarily equal in pairs. States with k ̸= n-arguments
become orthogonal to n-argument states when the supports of the state describing functions
are widely space-like separated. Compton wavelengths (14) set the scale for wide separation.
Connected contributions to VEV such as (10) implement interaction but their contributions
become negligible as the supports of the arguments of state describing functions become widely
space-like separated. Satisfaction of the cluster decomposition axiom A.6 provides that a scalar
product is described by VEV approximated by free field VEV if the support of the state de-
scribing functions becomes widely space-like separated. Free fields have natural interpretations
as classical particles [7, 9, 23, 24, 52, 61]. As initially localized and widely space-like sepa-
rated supports propagate and approach overlap, exhibition of interaction manifests in the state
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transition amplitudes: observations of distinct momenta and particle numbers become more
likely.

Scattering amplitudes are proportional to large time difference transition amplitudes eval-
uated in a limit with incoming and outgoing states described as plane waves [7, 23, 52, 61].
For the example of a single neutral scalar field and states described by product functions
fn((x)n) =

∏
j ℓ(xj ;λj ,qj), the scattering amplitudes are

Sn,m := lim
λ→∞

⟨U(λ)ℓ(λ,qn+1) . . . ℓ(λ,qn+m)|U(−λ)ℓ(−λ,q1) . . . ℓ(−λ,qn)⟩

with U(λ) the unitary operator that translates the states in time. The parameters λj ,qj in the
functions control an energy dependent phase and center the momentum support, respectively.
The designation ℓ(λj ,qj) indicates the values of the parameters of the state describing func-
tions ℓ(xj ;λj ,qj). The LSZ (Lehmann-Symanzik-Zimmermann) expressions [9] for scattering
amplitudes use functions with Fourier transforms

ℓ̃(pj ;λj ,qj) := eiEjλj (ωj + Ej)f̃(pj − qj) (96)

with λj a real parameter, qj a momentum vector and f̃(p) ∈ S(R3) is a Schwartz tempered test
function. From section 3.7, ℓ(xj ;λ,qj) is a function in the completion HP of P. A convenient
choice of test function are Gaussian functions

f̃(p) =

(
L2

π

)3/2

e−L2p2
> 0. (97)

These f̃(p) are point-wise nonnegative delta sequences heavily weighted near zero momentum
when nearing the plane wave limit L→∞ and∫

dp f̃(p− q) = 1.

The LSZ scattering amplitudes are VEV of products of fields

Φ(ℓ(λ,q)) :=

∫
dp (ω + E)eiEλf̃(p− q) Φ̃(p)

in this scalar field example. The VEV functions W̃k,n−k((p)n) are from (26) and section 3.4.
Temporal translations of the field evaluated with the state describing functions (96) are in-
dependent of time with the selection of the state describing function parameter λj equal to
λ.

U(λ)Φ(ℓ(λ,q))U(λ)−1 =

∫
dp (ω + E)e−i(ω−E)λf̃(p− q) Φ̃(p)

= Φ(ℓ(0,q))
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due to the limitation of the spectral support of the constructed VEV to mass shells.
In more familiar notation,

U(λ)Φ(ℓ(λ,q))U(λ)−1 = i

∫
dx û(λ,x)

↔
∂ o Φ(λ,x)

with
f(x)

↔
∂ o g(x) := f(x)ġ(x)− ḟ(x)g(x),

ḟ(x) the first time derivative of f(x) and

û(λ,x) :=
1

2π

∫
dp eiωλe−ip·xf̃(p− q)

is a smooth solution of the Klein-Gordon equation.
For the Gaussian functions (97), the plane wave scattering amplitudes are the limits

lim
L→∞

Sn,m = lim
L→∞
λ→∞

⟨U(λ)ℓ(λ,qn+1) . . . ℓ(λ,qn+m)|U(−λ)ℓ(−λ,q1) . . . ℓ(−λ,qn)⟩

= lim
L→∞

⟨ℓ(0,qn+1) . . . ℓ(0,qn+m)|ℓ(0,q1) . . . ℓ(0,qn)⟩.

Evaluation of the mass shell deltas in the VEV from section 3 simplify the expression and the
resulting quadrature is readily evaluated in the plane wave limit [33].

lim
L→∞

Sn,m = lim
L→∞

cn+m

(
L√
π

)3(n+m) ∫
d(p)n+m 2n+m

n+m∏
j=1

ωje
−L2(pj−qj)

2

×W̃n,m((−p)n, (p)n+1,n+m)

= 2n+m
n+m∏
j=1

ω(qj)W̃n,m((−q)n, (q)n+1,n+m).

(98)

This introduced a convenient notation

W̃n,m((−p)n, (p)n+1,n+m) (99)

for the VEV functions after evaluation of the mass shell delta functions, and ω(qj) is from (13).
Each

δ(p2k − λ2c) 7→
δ(Ek ± ωk)

2ωk

and the sign is determined by whether pk is the argument of a function or the ∗-dual of a
function. Each energy is evaluated on the appropriate mass shell. The signs on the energies
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Ek = ±ωk match the explicit signs of the momenta. Non-forward amplitudes result if only the
connected contribution CW̃n,m of the VEV is considered.

For the n = 4 example connected function (10), the non-forward, elastic scattering amplitude
is

S2,2 = c4δ(ω(q1) + ω(q2)− ω(q3)− ω(q4))δ(q1 + q2 − q3 − q4). (100)

This amplitude coincides up to a factor of i with the first order expansion from a Feynman
series with an interaction Hamiltonian that includes a single neutral scalar field : Φ4 : term
[31, 35]. This amplitude corresponds with a Yukawa-like equivalent potential in first Born
approximation. The incoming momenta are q1,q2 and the outgoing momenta are q3,q4. The
scattering amplitudes for (10) correspond to the first contributing order for an interaction
Hamiltonian density Hint(x) =

∑
ℓ aℓ : Φ(x)

ℓ : with ℓ ≥ 4 and aℓ = cℓ (2π)
2ℓ−4/ℓ!. cℓ is from

(53). The scattering cross sections of the constructions that realize quantummechanics associate
with first order (weak coupling) contributions from Feynman series. In cases with nonzero spin,
for example, Compton scattering, the cross sections deviate from first order Feynman series
results for extremely relativistic exchange momenta (small distances) [35].

In these example constructions, the scattering amplitudes are independent of time in the
plane wave limit [33]. In this development, the propagation of the support of states can be
followed through intermediate times. The lack of time dependence in finite time, plane wave
limits is understood from a Hamiltonian that contributes only a phase in the plane wave limit
and that plane waves uniformly cover all space.

4 Correspondence of quantum and classical descriptions

The discussion in section 2 illustrated that the presumed quantum-classical correspondence of
canonical quantization imposes unrealizable constraints on realization of relativistic quantum
physics. In this section, realizable correspondences of classical descriptions with the construc-
tions from section 3 are developed further. A quantum-classical correspondence identifies clas-
sical descriptions that represent the support of those state describing functions with evident
quantum-classical correspondences.

Understanding quantum mechanics as the description of nature has been a persistently
controversial topic [5, 8, 16, 44, 51, 57, 65]. An example of discomfort with quantum mechanics
is:

We have always had a great deal of difficulty understanding the world view that
quantum mechanics represents. At least I do, because I’m an old enough man that
I haven’t got to the point that this stuff is obvious to me. Okay, I still get nervous
with it. . . You know how it always is, every new idea, it takes a generation or two
until it becomes obvious that there’s no real problem. I cannot define the real
problem, therefore I suspect there’s no real problem, but I’m not sure there’s no
real problem. – Richard Feynman, 1982, p. 471 in [17].
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Quantum mechanics is often regarded as “strange,” perhaps referring to the incompatibility
of the quantum description of nature with classical understandings. Identified in the Einstein-
Podolosky-Rosen (EPR) paradox, [16] and appendix 6.6, classical concepts are contradicted
by the quantum description. The quantum description cannot even be thought of a statistical
distribution over classical descriptions. In the classical concept, every particle is distinguishable
and follows a trajectory. In the quantum description, particles are indistinguishable, and their
location and momentum are never simultaneously known. Although the precision required
to observe Heisenberg uncertainty bounds is unachievable on massive, “macroscopic” scales,
Schrödinger’s cat paradox [51] illustrates that quantum mechanics can not be relegated to a
“strange” microscopic world.

Considerations for the quantum-classical correspondence include: whether classical descrip-
tions correspond to the constructed state describing and VEV functions; when classical cor-
respondences apply; and what VEV describe nature. The richness of quantum mechanics
manifests in quantum-classical correspondences and a significant effort to characterize the cor-
respondences remains.

Since the constructions realize quantum mechanics, finite interval transition amplitudes as
well as infinite interval scattering amplitudes are available. Quantum-classical correspondences
are richer than anticipated in RQFT: several distinct classical dynamical descriptions corre-
spond to one construction. Scattering amplitudes and nonrelativistic brief duration amplitudes
correspond to distinct classical dynamical descriptions. The finite interval, nonrelativistic state
transition amplitudes are the primary focus of this section. For states that are well represented
by finite mass, point-like particles with sufficiently slow relative velocities over sufficiently brief
intervals, evolution is approximated by classical Newtonian mechanics with −g/r pair poten-
tials. Presumably, classical geometrodynamics and electrodynamics emerge from improved
approximations.

The more widely studied quantum-classical correspondences are scattering amplitudes. Clus-
ter decomposition A.6 provides that isolated initial and final scattered states are readily in-
terpreted as free particles. Scattering amplitudes include the inherently relativistic massless
particles. Scattering amplitudes enable comparison of the constructions with Feynman series.
Scattering amplitudes are provided in [31, 33, 35] and section 3.9. From an RQFT perspective,
the constructions are successful descriptions for nature even without studying the finite inter-
val state transitions: the constructed scattering amplitudes include approximations to Feynman
series.

The quantum-classical correspondence that is the primary topic of this section appears in
Schrödinger’s 1926 study of nonrelativistic linear harmonic oscillators [49]. The supports of
selected solutions to the Schrödinger equation are well represented by corresponding classi-
cal dynamical variables. In 1+1 spacetime, particular Gaussian functions ψ(x, λ) satisfy the
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Schrödinger equation.

ψ(x, ct) = exp

(
−(x−A coswt)2

4σ2
− iβx sinwt

ℏ
− iϕ(t)

)
satisfies (

− ℏ2

2m

d2

dx2
+

1

2
kx2
)
ψ = iℏ

dψ

dt

and the solution is characterized by a mass m, spring constant k, and oscillation amplitude A,

σ2 =
ℏ

2
√
mk

, w =

√
k

m

β =
√
mkA, ϕ(t) =

w

2
t− kA2

4ℏw
sin 2wt.

The breadth of support of ψ(x, ct) over x is described by σ and w is the oscillation frequency.
Selected as the peak likelihood, the representative for the support of this function is the tra-
jectory

x(λ) = A coswλ/c

of classical linear harmonic motion. The quantum-classical correspondence is most evident
when the spread of support is small with respect to the amplitude of the motion, σ2 ≪ A2. As
σ2/A2 → 0, the classical representative becomes essentially indistinguishable from the quantum
description. As m→∞,

σ2 =
ℏ

2
√
mk
≪ A2 =

2E

k
(101)

with the total classical energy E = 1
2kA

2 a constant of the motion. The support of the function
ψ(x, λ):

1. persists along classical trajectories with the evolution of time λ:

2. the support of the state with the classical correspondence has a particular spread σ
determined by k and E;

3. these ψ(x, λ) are not eigenstates of the Hamiltonian, but are among the most-classical-
like descriptions that meet the Heisenberg lower bound on the breadth of support over
location and momentum;

4. and any classical energy E can be matched by a quantum mechanical description, a
function ψ(x, ct).
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This quantum-classical correspondence does not apply for all state describing functions. For
example, the supports of the energy eigenfunctions of a linear harmonic oscillator,

en(x, ct) = Hn(αx) exp

(
−i(n+

1

2
)wt− 1

2
α2x2

)
with Hn the nth Hermite polynomial [1] and

α2 =

√
mk

ℏ
,

do not follow classical trajectories of linear harmonic motion. The energy eigenfunctions exhibit
quantized energies

1

2
kA2 = (n+

1

2
)ℏw.

For the energy eigenfunctions, only a phase, and not the support of the state describing func-
tions, evolves with time.

To simplify notation and the development, discussions within this section are often limited
to a single, neutral scalar field, Nc = 1.

4.1 States with a quantum-classical correspondence

Verified daily, classical dynamical variables provide accurate representatives for the quantum
description when the support of states is “macroscopic,” that is, classical body-like. A quantum
state description is classical body-like if its spatial support is isolated and well represented by a
single location, and the support of its Fourier transform is well represented by a single momen-
tum. The Michelson interferometer illustrates that localization is necessary, and a vessel of gas
illustrates that isolation is necessary to apply a quantum-classical correspondence, appendix
6.5. The EPR paradox [16] illustrates that descriptions must not be entangled for a quantum-
classical correspondence to apply. If the dominant support of states is classical body-like, an
approximate and conditional correspondence of classical and quantum state descriptions sub-
stitutes for the canonical quantization-conjectured elevations of classical dynamical variables to
densely defined Hermitian operators.

Localization (102), isolation (105), a dominant momentum (103) and nonrelativistic support
(109) are described below for one neutral scalar field and more generally, the definitions apply
for each constituent function labeled by field component κ.

Localization: The jth argument of a state describing function φn((x)n) is localized near
yj if

⟨ψn|g(xj)φn⟩ ≈ g(yj)⟨ψn|φn⟩ (102)

for multiplier functions g(x) of slow variation within the dominant support of φn((x)n) over
xj . yj is representative of the argument xj , the jth argument of φn((x)n). The notation (23)
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is for function sequences with a single nonzero constituent function and g(xj)φn designates the
n-argument function

g(xj)φn(x1, x2, . . . xj , . . . xn).

Dominant momenta: The jth argument of a state description φn((x)n) is dominantly
suppored near a momentum qj if the support of the Fourier transform φ̃n((p)n) is localized
(102). That is,

⟨ψ̃n|g̃(pj)φ̃n⟩ ≈ g̃(qj)⟨ψ̃n|φ̃n⟩ (103)

for momentum domain, multiplier functions g̃(p) of slow variation within the dominant support
of argument pj from φ̃n((p)n). qj is representative of pj , the jth argument of φ̃n((p)n).

Isolated: The support of a localized argument xj is isolated if there is little likelihood that
a neighborhood of its representative value yj is included within the dominant support of any
other argument of the state describing function. To describe isolation, a localization of φn is
developed. Every φn ∈ P(R4n) has a Fourier transform of the form (89), section 3.7. In the
notation of this section,

φ̃n((p)n) :=

n∏
j=1

(pj0 + ωj) f̃n((p)n)

and then

φn((x)n) =
n∏
j=1

(
−i ∂

∂xj0
+

√
λ−2
c −∆j

)
fn((x)n) (104)

with fn((x)n) ∈ S(R4n), ∆j is the Laplacian for R3 that applies to the jth argument, and√
λ−2
c −∆j

is an anti-local operation, [45, 53] and appendix 6.14. A mapping Lℓ(χ,yj)φn of the function
φn follows from

fn((x)n) 7→ gχ(xℓ;yj)fn((x)n)

where fn((x)n) is related to φn((x)n) by (104), and gχ(x;yj) ∈ S(R4n) is a multiplier function
that equals one in a neighborhood χ ⊂ R3 including yj and is zero otherwise except for a brief,
smooth transition from zero to unity [19]: the support of gχ(x;yj) is over a neighborhood χ
of yj . The localization Lℓ(χ,yj) applies to the ℓth argument of φn. Then, the support of a
localized argument xj is isolated if

∥Lℓ(χ,yj)φn∥ ≪ ∥Lj(χ,yj)φn∥ for ℓ ̸= j (105)

and any neighborhood χ within the dominant support of argument j of φn. If isolation is
satisfied, only the support of the jth argument associates to great likelihood with the volume
of space represented by yk.
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The most classical-like descriptions meet the Heisenberg uncertainty bound for localization
and dominance in momentum. The association of spatial volumes with classical dynamical
variables occurs on relatively large spatial scales, for spatial supports of extents large with
respect to Compton wavelengths.

The quantum-classical correspondence discussed in this section applies only as long as the
support of a state description remains isolated and well represented by a single location and
momentum, and particle number is conserved. The nonrelativistic quantum-classical correspon-
dences discussed below are limited to massive elementary particles, m > 0. Massless particles,
inherently relativistic, are included in the constructions of section 3 but not in this discussion
of quantum-classical correspondences.

Consistent with a nonrelativistic development, classical trajectories uj(λ) are spatial vectors,

uj(λ) = (ujx (λ), ujy(λ), ujz (λ)),

defined in a particular reference frame. Associated spacetime vectors uj(λ) are designated

uj(λ) = (0, ujx (λ), ujy(λ), ujz (λ)). (106)

Derivatives with respect to the temporal parameter λ are designated

u̇j(λ) :=
duj(λ)

dλ
(107)

and the distance λ := ct for a time t with c the speed of light. Trajectories are twice differentiable
curves in R3 that specify one body’s history of locations uj(λ) and velocities u̇j(λ). Momenta
ℏwj(λ) are Euclidean three-vectors associated with the particle trajectories uj(λ).

λcwj(λ) := γj u̇j(λ)

≈ u̇j(λ)
(108)

with

γj :=
1√

1− u̇2
j

and the approximation applies in nonrelativistic (u̇2
j ≪ 1) instances. λc is the reduced Compton

wavelength (14) for the appropriate mass determined from the field component. The energy-
momentum Lorentz vector is pj := (ω(wj),wj) with ω(p) from (13).

Nonrelativistic: Nonrelativistic physics applies if the momentum domain supports of the
functions φn are sufficiently limited. The support of an argument pj is nonrelativistic if there
is a boost to a reference frame such that the momentum support satisfies ℏ2p2

j ≪ (mc)2 for pj
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within the dominant support. In this frame,

p2
j ≪ λ−2

c

⟨φn|ωjφn⟩ ≈ ⟨φ̃n|(λ−1
c + 1

2λcp
2
j )φ̃n⟩

wj(λ) ≈ λ−1
c u̇j(λ)

(109)

from (106). Nonrelativistic approximations for the Hamiltonian (92) are discussed in appendix
6.13. A state description φn is nonrelativistic if there is a reference frame with the support of
all n arguments nonrelativistic.

If the support of every argument of two functions fn, gm is nonrelativistic in a selected
reference frame, then

⟨φn|ψm⟩ = 0 if n ̸= m.

In nonrelativistic instances, energy is not conserved if n ̸= m since from (109), ωj ≈ λ−1
c + 1

2λcp
2
j

and λ−1
c ≫ λcp

2
j for all constituent j. Then there is no solution with conserved energy, kλ−1

c =

nλ−1
c , except for n = k. In nonrelativistic instances or if localized supports are sufficiently

isolated, the scalar product (21) simplifies.

⟨φ|ψ⟩ =
∑
n,m

⟨φn|ψm⟩

≈
∑
n

⟨φn|ψn⟩.

Appropriate functions: If f̃n((p)n, λ) ∈ S(R3n) is a function dominantly supported near
(p)n = 0 with inverse Fourier transforms dominantly supported near (x)n = 0, then state
describing functions

φ̃n((p)n;λ) =
n∏
j=1

e−ipj ·uj(λ)(pj0 + ωj)f̃n((p−w(λ))n;λ) (110)

have spatial supports centered on uj(λ) and momentum supports centered on wj(λ). If the sup-
port of f̃n((p)n, λ) nearly satisfies the Heisenberg uncertainty bound for location and momen-
tum support breadth, then the state describing functions (110) are appropriate for a quantum-
classical correspondence. Remaining requirements are that the description lacks entanglement
and the uj(λ) are sufficiently space-like separated to satisfy isolation. With appropriate se-
lections for uj(λ) and wj(λ), the support of (110) is nonrelativistic (109), isolated (105) and
localized (102). ωj is from (13). From the Fourier transform pair (33) with (34), (111) has an
inverse Fourier transform (16),

φn((x)n;λ) :=

n∏
j=1

eiwj(λ)·(xj−uj(λ))

(
−i ∂
∂xj0

+

√
λ−2
c −∆j

)
fn((x− u(λ))n;λ) (111)
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with ∆j the Laplacian in R3 for argument xj . The inverse Fourier transforms (16) of (110) have
point support at time zero, each xj0 = 0, (227) in appendix 6.10. In (111), classical trajectories
(0,uj(λ)) are representatives for the volumes of dominant spatial support, and the ℏwj(λ) are
representatives for the dominant momentum support. The temporal parameter λ is included
in the description of fn in (111) to describe a continuous deformation of fn((x)n;λ) with time.
The example below is a λ dependent support spread parameter for a Gaussian function. The
support of the state describing function translates and typically spreads with time evolution
(32). The functions φn((x)n;λ) are infinitely differentiable with respect to uj(λ) and u̇j(λ).

Products of single argument state describing functions lack entanglement and independently
describe each argument: single particle observables do not vary with the descriptions of other
particles. Products of Gaussian functions (97) are classical-like since products lack entangle-
ment and Gaussian functions include the most classical-like single particle descriptions. From
the Heisenberg uncertainty principle, appendix 6.7, Gaussian functions (97) with real spread
parameters achieve the lower bound for support spread in location and momentum. Over in-
tervals of limited duration, Gaussian functions translate in time to Gaussian functions with
complex spread parameters in nonrelativistic approximation.

4.2 The support of state descriptions

The physically relevant support of states is determined by the likelihoods of observation. Like-
lihoods are determined from Born’s rule from the squared magnitudes of scalar products (21)
for state describing functions φn ∈ HP . From A.3, Born’s rule likelihoods are invariant to
Poincaré transformations and state descriptions are covariant. The spatial support of φn((x)n)
follows from the real-valued function over (y)k,

|⟨(y)k|φn⟩|2 (112)

with |(y)k⟩ designating a state describing k-argument function in a delta sequence within HP .
|(y)k⟩ is centered on (y)k ∈ R3k. In nonrelativistic instances, k = n. However, due to the very
localized support of the delta sequence, the momentum domain support of a delta sequence
includes very relativistic momenta. With the scalar products constructed in section 3, a state
describing function φn((x)n) include descriptions of k ̸= n particles. Time translations of
a spatial delta function will not be of point support; the Hamiltonian (93) is an anti-local
operator. Similarly, the momentum support of φn((x)n) derives from

|⟨(q)k|φ̃n⟩|2 (113)

with (q)k designating a k-argument function in a delta sequence within the Fourier transform
domain of HP centered on (q)k. The spatial support of (qk) approaches R3 but k = n for
nonrelativistic momenta.

The energy-momentum support of the VEV constructed in section 3 is limited to mass
shells. As a consequence, the time and spatial support of functions φn((x)n)(κ)n

estimated as
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the inverse Fourier transform of φ̃n((p)n)(κ)n
is ambiguous. Energy and momentum variables

can be freely substituted

pj0 ←→
√
λ−2
cj + p2

j .

The inverse Fourier transform of a momentum domain state describing function depends on
whether one considers any pj0 an independent energy variable or a function of the momentum.
In this section, a convention for the spacetime support of φn estimated as the inverse Fourier
transform of φ̃n((p)n)(κ)n

is selected. The support over time of state describing functions is
selected as point support: states are observed at an assigned time. Then, the convention is that
there is no energy dependence of functions φn ∈ HP , each pj0 7→ ωj .

In a selected reference frame, a state is described by a function over space and time pa-
rameterizes the evolution of that state description. Time generally is kept externally to the
observed and perceived quantities are assigned a time. The completion of P(R4n) to HP in-
cludes functions such as (111) that are generalized functions of point support over time and test
functions over space. These are the functions of interest in nonrelativistic physics. Relativity
covariantly relates descriptions among distinct reference frames and the likelihoods of events is
independent of inertial reference frame.

From (6), (8), (16), (26) and the Fourier transform of generalized functions [19], the scalar
product (21) expressed in the momentum domain is (114).

⟨φ|ψ⟩ =
∑
n,m

∑
(κ)n+m

∫
d(p)n+m ⟨Φ̃(p1)κ1 . . . Φ̃(pn)κnΩ|Φ̃(pn+1)κn+1 . . . Φ̃(pn+m)κn+mΩ⟩

×φ̃n(−p1, . . .− pn)κ1...κn ψ̃m(pn+1, . . . pn+m)κn+1...κn+m

=
∑
n,m

∑
(κ)n+m

∫
d(p)n+m Tn,m((p)n+m)(κ)n+m

δ(p1 + p2 . . .+ pn+m)

×
n∏
j=1

δ(p2j − λ
−2
cj ) (ωj − pj0)f̃n(−p1, . . .− pn)κ1...κn

×
n+m∏
j=n+1

δ(p2j − λ
−2
cj ) (ωj + pj0)g̃m(pn+1, . . . pn+m)κn+1...κn+m

(114)

with φ and ψ ∈ HP from (89),

φ̃n((p)n) =

n∏
j=1

(ωj + pj0)f̃n((p)n)κ1...κn

ψ̃n((p)n) =

n∏
j=1

(ωj + pj0)g̃n((p)n)κ1...κn .

This scalar product is expressed for basis space P development in section 3.7.1 with the VEV
from section 3.4. The φn, ψn are anti-local functions and fn, gn ∈ S(R4n). Tn,m ∈ S ′(R3n+3m)



4 CORRESPONDENCE OF QUANTUM AND CLASSICAL DESCRIPTIONS 83

and all energies pj0 are constrained to positive mass shells

pj0 = ωj

after reflection in four dimensions of the summation variables (p)n 7→ (−p)n in the ∗-dual
function φ̃n.

Isolating consideration to one function argument and one field component from a general
state describing function φ̃n((p)n)(κ)n

, let

φ̃(pj) = (ωj + pj0)f̃(pj)

describe argument j for field component κj . Setting every pj0 = ωj and noting the (2ωj)
−1 in

the scalar product (114) from evaluation of δ(p2j − λ
−2
cj ), the inverse Fourier transform is∫

dp

(2π)2
eipxeiω(p)λo f̃(ω(p),p)

=

∫
dp0

(2π)
1
2

eip0(x0−λ)
∫

dp

(2π)
3
2

e−ip·xeiω(p)(λ+λo)f̃(p)

= (2π)
1
2 δ(x0 − λ)f(λ+ λo,x)

(115)

with the designation

f(λ,x) :=

∫
dp

(2π)
3
2

e−ip·xeiω(p)λf̃(p). (116)

Establishing the convention that every pj0 = ωj , the description of state at time x0 = 0 is
f(λo,x), derived from

eiω(p)λo f̃(p),

the state description at time x0 = −λo. eiω(p) is the time translation operator (93) that
applies to argument j (92). The transform (116) is evaluated for convenient selections of packet
functions f̃(p) in appendix 6.10.

Finally, with the convention established, given a state describing function φ̃n((p)n), the
spatial support at time λ = 0 follows from the multivariable, momentum domain (three dimen-
sional) inverse Fourier transform (16) of

φ̃n((p)n)(κ)n
∈ S(R4n) 7→

n∏
j=1

φ̃n((ω(p),p)n)(κ)n

2ωj
∈ S(R3n). (117)

For later times λ, the spatial support is the inverse Fourier transform (16) of

n∏
j=1

eiωjλ
φ̃n((ω(p),p)n)(κ)n

2ωj
∈ S(R3n).
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4.3 A nonrelativistic quantum-classical correspondence

From the nontrivial scattering amplitudes, including (100) and [31, 33, 35], it is evident that
the VEV constructed in section 3.4 exhibit interaction. Interaction is also manifest in the finite
interval, nonrelativistic transition amplitudes. In this section, a nonrelativistic correspondence
of classical trajectories with the time evolution of state describing functions is developed.

Our perceptions of “macroscopic” and nonrelativistic quantum states satisfy classical dy-
namics. The quantum-classical correspondence introduced in sections 2 and 4.1 is that the
isolated support of each argument of the state describing function φn(λ) is well represented
by a single location and momentum. These locations and momenta correspond with classical
dynamical variables. Time evolution of the state describing function is represented by the tem-
poral evolution of the classical dynamical variables. This correspondence of classical particle
trajectories uj(λ) with the evolution of a normalized state describing function is realized if

|U(λ)φ̂n(0)⟩ ≈ eiϕI(λ)|φ̂n(λ)⟩ (118)

for times λ > 0. This quantum-classical correspondence applies for appropriate, normalized
state descriptions such as (111). (118) adapts particle trajectories (106) to the evolution of state
describing functions in quantum mechanics. Appropriate state describing functions have spatial
and momentum support that is body-like: localized (102), well represented by a momentum
(103), identifiable due to isolation (105), and nonrelativistic (109). Characterization of the
evolution includes changes to the function φn(λ) over the interval λ. Typically the breadth of
the support of φn((x)n;λ) grows with λ from the unitary time evolution: classically, uncertainty
in the initial momenta implies a spreading of the spatial support over time. Normalization is
in the Hilbert space norm (20),

φ̂n(λ) :=
φn(λ)

∥φn(λ)∥
. (119)

Justified by Poincaré invariance of the scalar product (29), the reference time for the evolution
in (118) is taken as zero without loss of generality. λ refers to time offset intervals. The quantum
mechanical evolution of states follows a unitary (93) mapping U(λ) (32) of the state describing
functions.

U(λ)φn(0) = φn(−λ, x1−u1x(0), y1−u1y(0), z1−u1z(0), . . . ; 0)
from (32) with functions φn((0,x)n; 0) supported in a neighborhood of the spatial origin (x)n =
0 with the designation for spatial vectors xj = xj , yj , zj . (118) asserts that the nonrelativistic
evolution of support follows trajectories uj(λ) = ujx(λ), ujy(λ), ujz(λ) that satisfy classical
Newtonian dynamics,

φn(λ) = φn(0, x1−u1x(λ), y1−u1y(λ), z1−u1z(λ), . . . ;λ).

In the description (111) of state describing functions with a classical correspondence, the dis-
played argument λ of φn(λ) parameterizes the evolution of the trajectories uk(λ) and a contin-
uous deformation of φn(0). The phase ϕI(λ) from (118) is determined by the state describing
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functions U(λ)φ̂n(0) and φ̂n(λ), and is a purely quantum mechanical consideration following
from the descriptions of states as rays in a complex Hilbert space. Including this phase and
a deformation of the support of an appropriate state describing function, (118) represents the
unitary evolution of the state describing function φn(0) with the evolution of the classical
dynamical variables u(λ).

A quantum-classical correspondence includes satisfaction of three considerations:

C.1) the likelihood that (118) is satisfied is near unity

C.2) the quantum-classical correspondence must persist: the supports of the functions (111)
must remain localized (102), well represented by a momentum (103), isolated (105) and
nonrelativistic (109)

C.3) identification of the corresponding trajectories uj(λ).

If all three considerations are satisfied, then the trajectories uk(λ) provide quantum-classical
correspondences with the time evolution of the quantum state description at any time within
the interval (0, λ).

Position and momentum eigenfunctions are not suitable for quantum-classical correspon-
dences. Position and momentum eigenfunctions are among the least classical-like by the criteria
that location and momentum are both specified in a classical description. While |⟨(y)k|φn⟩|2
provides the likelihood that the state described by φn will be jointly perceived near the (y)k,
(y)k does not describe a state with an evident classical interpretation: there is no indication of
a momentum and k is not necessarily equal to n since (y)k is relativistic when sufficiently local-
ized. Likelihoods |⟨(y)k|U(λ)φn⟩|2 describe the temporal evolution of perceptions of location
but not necessarily a correspondence with classical descriptions of particles. Similarly, there is
no indication of location in the likelihoods |⟨(q)k|φ̃n⟩|2. Nevertheless, before the plane wave
limit, likelihoods |⟨(q)k|φ̃n⟩|2 are useful for scattering since asymptotically the supports of the
state describing functions are sufficiently spatially separated that cluster decomposition A.6
provides that localization (102) and isolation (105) apply to associate φn with corresponding
classical particles. This correspondence from scattering does not apply for brief λ. For brief λ,
(118) is the likelihood that a classical-like state is perceived with the evolution of nonrelativis-
tic, classical-like initial state descriptions. In (118), the two states are described by the same
particles with brief evolution of the momentum and location supports.

The approximate equality of state describing functions (118) is in the Hilbert space norm
(20). ∥∥∥U(λ)φ̂n(0)− eiϕI(λ)φ̂n(λ)

∥∥∥2 ≈ 0.

The norm is determined by the scalar products (21) of appropriate state describing functions
(111) evaluated for VEV from section 3. The phase ϕI(λ) is an additive and homogeneous
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function
ϕI(a+ b) = ϕI(a) + ϕI(b)

ϕI(0) = 0.

ϕI(λ) is determined to minimize the error in the approximation (118).

0 ≈
∥∥U(λ)φ̂n(0)− eiϕI(λ)φ̂n(λ)

∥∥2
= 2− 2ℜe

(
eiϕI(λ)⟨U(λ)φ̂n(0)|φ̂n(λ)⟩

)
.

∥U(λ)φn(0)∥ = ∥φn(0)∥ from Poincaré invariance of the scalar product. Error is minimized by
maximization of the real component of the product of the phase factor and the scalar product.
From

ℜe
(
eiϕI(λ)⟨U(λ)φ̂n(0)|φ̂n(λ)⟩

)
≤ |⟨U(λ)φ̂n(0)|φ̂n(λ)⟩|,

polar decomposition of the scalar product determines the phase that achieves the maximum.

⟨U(λ)φn(0)|φn(λ)⟩ = e−iϕI(λ)|⟨U(λ)φn(0)|φn(λ)⟩|. (120)

The Cauchy-Schwarz-Bunyakovsky inequality provides that

|⟨U(λ)φ̂n(0)|φ̂n(λ)⟩| ≤ 1. (121)

It is convenient to designate the scalar product of normalized states

I(λ) :=
⟨U(λ)φn(0)|eiϕI(λ)φn(λ)⟩

⟨φn(0)|φn(0)⟩
1
2 ⟨φn(λ)|φn(λ)⟩

1
2

. (122)

I(λ) is a composite function of differentiable trajectories uk(λ) with uk(0), u̇k(0) considered
as initial conditions for the corresponding classical trajectories. From Born’s rule, |I(λ)|2 is
a likelihood, the likelihood that the state described by U(λ)φn(0) is perceived as the state
described by φn(λ).

Continuous differentiability of |I(λ)|2 suffices to satisfy C.1-3 for brief λ. A Taylor theorem
polynomial in λ approximates the likelihood.

|I(λ)|2 = |I(0)|2 + λ
d|I(0)|2

dλ
+

1

2
λ2
d2|I(0)|2

dλ2
+ . . . (123)

and from the Cauchy-Schwarz-Bunyakovsky inequality (121), λ = 0 is recognized as a maxima
with

d|I(0)|2

dλ
= 0.
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From (122), |I(0)|2 = 1 and for sufficiently brief λ,

|I(λ)|2 ≈ 1 + 1
2λ

2d
2|I(0)|2

dλ2

= 1− 1
2λ

2

∣∣∣∣d2|I(0)|2dλ2

∣∣∣∣ . (124)

For sufficiently brief intervals λ, the first derivative is proportional to λ.

d|I(λ)|2

dλ
≈ λd

2|I(0)|2

dλ2
.

To evaluate first derivatives of |I(λ)|2 for λ > 0, the Taylor theorem polynomial expansion (123)
must include order λ2 terms. Extrapolation of the quantum-classical correspondence (118) from
brief to more extended intervals is discussed in section 4.4.2.

Minimization of the first temporal derivative of |I(λ)|2 provides that |I(λ)| ≈ 1 for brief λ.
The most likely corresponding classical trajectories uj(λ) optimize

d|I(λ)|2

dλ
≈ 0 (125)

for λ > 0. For the most likely trajectory, satisfaction of the quantum-classical correspondence
(118) is not improved by any modification to the trajectory. For the optimal trajectory,

∂|I(λ)|2

∂uj(λ)
= 0

∂|I(λ)|2

∂u̇j(λ)
= 0

(126)

individually for each component of the uj(λ) and u̇j(λ). Here, partial derivatives with respect
to a spatial vector designates a gradient vector

∂F (u)

∂u
:=

∂F (u)

∂ux
,
∂F (u)

∂uy
,
∂F (u)

∂uz
.

The state describing functions φ̃n(λ) in (111) are composite functions including variations
with 6n functions uj(λ) and u̇j(λ). However, not all 6n functions are considered in (126). The
center-of-momentum of the n interacting classical particles representative of φn(λ) evolves as
a single free body independently of the relative motion of the bodies. Independence applies
in nonrelativistic approximation (109). Poincaré invariance (29) of the scalar product (21)
and covariance (30) of state descriptions φn(λ) provide that a Poincaré transformation equates
any scalar product to the scalar product in a center-of-momentum reference frame for the n
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trajectories uj(λ) with momenta wj(λ). In nonrelativistic approximation u̇j(λ) = λcwj(λ). In
the center-of-momentum frame and for nonrelativistic momenta,

n∑
j=1

mκjuj(λ) = 0, and
n∑
j=1

mκj u̇j(λ) = 0.

Transformation to this frame is a boost described in appendix 6.11, and a translation to colocate
the center-of-mass ∑n

j=1mκjuj(λ)∑n
j=1mκj

with the origin of coordinates. As a consequence, 6 functions uj(λ), u̇j(λ) are linear combina-
tions of the remaining 6(n−1) functions.

A chain rule expansion of |I(λ)|2 includes partial derivatives with respect to the n − 1
independent uj(λ), u̇j(λ).

d|I(λ)|2

dλ
=

n−1∑
j−1

∂|I(λ)|2

duj(λ)
· u̇j(λ) +

n−1∑
j−1

∂|I(λ)|2

du̇j(λ)
· üj(λ) +

∂|I(λ)|2

∂λ
(127)

with the uj(λ) and u̇j(λ) held constant in evaluation of

∂|I(λ)|2

∂λ
.

The uj(λ) and u̇j(λ) are considered independent variables in I(λ), j ∈ {1, n − 1}. Then the
trajectory selection criterion (125) is satisfaction of (126) with

∂|I(λ)|2

∂λ
≈ 0. (128)

In brief interval Taylor theorem polynomial expansions (123) for |I(λ)|2 about λ = 0, the
conditions (126) and (128) are satisfied to first order in brief λ. Then,

∂|I(λ)|2

∂β
= O(λ2)

satisfies (128) with β a component of uj(λ), a component of u̇j(λ) or λ.
In section 4.4.5 below and within the fidelity of nonnrelativistic, brief interval, limited

acceleration approximations,
d|I(λ)|2

dβ
= O(λ2)

identically without constraint on uj(λ) or u̇j(λ). Then, within the fidelity of the estimates
selected to gain insight and minimize proliferation of terms, maximization of the likelihood does
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not resolve a most likely trajectory. However, derivatives also relate the classical to quantum
descriptions of the energy. This energy correspondence determines that the trajectories uj(λ)
derive from −g/r pair potentials. Discussed in section 4.4.6 below and similarly to Schrödinger’s
development of the linear harmonic oscillator, [49] and section 4, the corresponding trajectories
uj(λ) are determined by observation.

The likelihood |I(λ)|2 is the squared magnitude of the normalized scalar product (122).
Derivatives of the likelihood follow from derivatives of the unnormalized scalar products. From
(122) and the chain rule with β a component of u(λ), a component of u̇(λ) or λ,

∂I(λ)

∂β
=

1√
S0Sλ

∂Sm
∂β
− Sm

2Sλ
√
S0Sλ

∂Sλ
∂β

with the designations
Sm := ⟨U(λ)φn(0)|φn(λ)⟩
S0 := ⟨φn(0)|φn(0)⟩
Sλ := ⟨φn(λ)|φn(λ)⟩.

(129)

I(λ) ̸= 0 and optimality (125) is satisfied if

∂|I(λ)|2

∂β
= 2Re

(
I(λ)

∂I(λ)

∂β

)
= 2Re

(
Sm
S0Sλ

∂Sm
∂β
− |Sm|

2

2S0S2
λ

∂Sλ
∂β

)
= 0.

S0, Sλ, Sm ̸= 0 and S0, Sλ, |Sm|2 ∈ R. Then

∂|I(λ)|2

∂β
= 0

if and only if

Re
(

2

Sm

∂Sm
∂β

)
− 1

Sλ
Re
(
∂Sλ
∂β

)
= 0. (130)

Rather than determination of the quantum dynamics from canonical quantization of a clas-
sical dynamical model, the quantum dynamics is determined to satisfy general principles of
quantum mechanics and relativity, and the classical dynamics corresponding to this quantum
dynamics is derived. A classical correspondence is conditioned on characteristics of the quan-
tum description of state. There is a quantum-classical correspondence if the quantum state
description is “macroscopic,” but if the quantum state description includes significant spatial
overlaps or entanglement, then a quantum-classical correspondence does not apply.
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Representations of the evolution of the state describing function by a single classical trajec-
tory per body (118) deteriorate with increased propagation intervals. Considering the classical
correspondence for each classical body, nearby initial conditions produce trajectories that di-
verge with time. With sufficient divergence of corresponding trajectories, association of the
support of a state describing function with a classical body, satisfaction of C.2, is lost over
time. Another perspective on the limited duration of the quantum-classical correspondence
(118) is suggested by the Riemann-Lebesgue lemma [48]. The likelihood

|⟨U(λ)φn(0)|eiϕI(λ)φn(λ)⟩|2

will asymptotically converge to zero for λ→∞ unless the phases exp(iωkλ) from the Hamilto-
nian (92) are compensated by the state describing function φn(λ). The phase ϕI(λ) does not
suffice to compensate exp(iωkλ) since ϕI(λ) does not vary with momenta (p)n. An uncompen-
sated phase proportional to λ leads to an asymptotically vanishing scalar product (122).

Persistent classical correspondences such as observations of planetary motions over great
periods typically include recurring localizing observations. The relevant descriptions of state
undergo recurring localization from interactions. The localizing observations are the result
of scatter and emission of radiation, and perturbations of the motion of additional bodies.
Inclusion of these effects on observed classical correspondences is an additional insight requiring
further development.

4.4 Two body correspondence

This section is a substantial digression to evaluate the quantum-classical correspondence (118)
for two-argument state describing functions. For two-argument state describing functions, the
nonrelativistic correspondence is with two classical bodies. The two classical bodies are de-
scribed by a freely evolving center-of-momentum and one independent trajectory u1(λ). Non-
relativistic, brief interval, limited acceleration approximations for the scalar products (118) and
first derivatives are evaluated. This example uses the VEV for a single neutral scalar field and
appropriate state describing functions (111) from HP .

A quantum-classical correspondences satisfies C.1-3 in section 4.3. Satisfaction of (118)
maximizes the likelihood

|I(λ)|2 = |⟨e−iHλφ2(0)|φ2(λ)⟩|2

⟨φ2(0)|φ2(0)⟩⟨φ2(λ)|φ2(λ)⟩
. (131)

Following (110) in section 4.1, appropriate two-argument state describing functions

φ2((x)2;λ)

have Fourier transforms

φ̃2(p1, p2;λ) :=

2∏
j=1

e−ipj ·uj(λ)(pj0 + ωj) f̃2(p1−w1(λ),p2−w2(λ);λ). (132)
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Poincaré invariance is exploited to express scalar products in the center-of-momentum coordi-
nate frame determined by the corresponding classical locations uj(λ) and momenta wj(λ). In
this center-of-momentum coordinate frame with the center-of-mass colocated with the origin,

u2(λ) = −u1(λ),

w2(λ) = −w1(λ) and for nonrelativistic (109) momenta, λcw2(λ) ≈ u̇j(λ).

4.4.1 Nonrelativistic approximation

While the quantum dynamics is relativistic, the quantum-classical correspondence discussed in
section 4.3 applies for nonrelativistic, Newtonian classical dynamics. Scattering amplitudes,
section 3.9, for example, the elastic scattering amplitude (100) for a single neutral scalar field,
provide relativistic correspondences. In this section, nonrelativistic, reference frame-dependent
approximations for the scalar products that determine the likelihoods |I(λ)|2 from (131) are
developed.

The form of f̃2 in (132) is selected to remove consideration of the motion of the center-of-
momentum from evaluation of the likelihoods |I(λ)|2. In nonrelativistic approximation, length
contraction and time dilation are negligible and the dynamics of the center-of-momentum de-
couples from internal motion. With the selected form, description of the motion of the center-
of-momentum is factored from description of the relative motion of the two bodies. The selected
f̃2 separates in Jacobi coordinates in the center-of-momentum reference frame.

f̃2(p1−w(λ),p2+w(λ);λ) := f̃M (p1 + p2;λ)f̃I(p1 − p2 − 2w(λ);λ). (133)

fM describes the center-of-momentum, and fI describes the relative motion of two correspond-
ing classical bodies designated 1 and 2. The identification of classical bodies with arguments
requires isolation (105). In the center-of-momentum reference frame, an abbreviated designa-
tion,

u(λ) := u1(λ),

is substituted. Similarly, w(λ) := w1(λ). The supports of f̃M (p;λ) and f̃I(p;λ) are centered
on the origins in both the space and momentum domains. Factors of ωj + pj0 commute with
the Hamiltonian (92) and then the time evolution of the state describing function is

e−iHλf̃2((p−w(λ))2; 0) = e−i(ω1+ω2)λ f̃M (p1 + p2; 0)f̃I(p1 − p2 − 2w(0); 0).

Jacobi coordinates are

p′
1 := p1 + p2 and p′

2 := p1 − p2 (134)

and then

p1 =
p′
1 + p′

2

2
and p2 =

p′
1 − p′

2

2
.
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With similar substitutions for p3,p4, the Jacobian for the coordinate transformation (p)4 7→
(p′)4 is

(
1
4

)3
for the four variables in three dimensional space.

Conservation of momentum separates in Jacobi coordinates. Factors of ωj + pj0 after eval-
uation of mass shell delta functions in the state describing functions become approximately
constant in nonrelativistic approximation, ωj ≈ λ−1

c if λ2cp
2
j ≪ 1. The remaining separability

considerations are the separability of the Hamiltonian and the conservation energy.
A separation of variables in the time translation (93) follows from nonrelativistic approx-

imation (109) for the Hamiltonian (92). The Hamiltonian in the two-argument subspace is
ω1 + ω2. Taylor theorem polynomial approximation results in

ω1 + ω2 = ω(
p′
1+p′

2
2 ) + ω(

p′
1−p′

2
2 )

≈ 2ω(12p
′
2) +

p′2
1

4ω(12p
′
2)

≈ 2ω(12p
′
2) +

1
4λcp

′2
1

from (13) and with the nonrelativistic approximation (239) from appendix 6.13. λ2cp
′
1
2 ≪ 1.

Then, for the state describing function (132) in nonrelativistic instances, time translation factors
in Jacobi coordinates,

U(λ)f̃2((p−w(λ))2; 0) ≈
(
e−i 1

4
λcp′2

1 λf̃M (p′
1; 0)

)(
e−2iω(

p′
2
2
)λf̃I(p

′
2 − 2w(0); 0)

)
. (135)

Nonrelativistic approximation of the Hamiltonian limits the duration of the interval λ in
(93) that results in an accurate time translate. For negligible error,(

ω1 + ω2 − 2ω(
1

2
p′
2)−

1

4
λcp

′2
1

)
λ≪ π.

Indeed, the nonrelativistic approximations to ωj are polynomials in pj and are qualitatively

different from Hamiltonians.
√
λ−2
c −∆ is an anti-local operator [53] while powers of the

Laplacian ∆ are local.
Separation of variables in the energy conservation delta function also follows from nonrela-

tivistic approximation, (240) in appendix 6.13.

ω1 + ω2 − ω3 − ω4 ≈ 2ω(
1

2
p′
2)− 2ω(

1

2
p′
4).

Conservation of momentum provides that p′
1 = p′

3.
With time evolution used to define the deformation with time for the center-of-mass de-

scribing function,

f̃M (p;λ) = e−i 1
4
λcp2λf̃M (p; 0), (136)
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nonrelativistic approximation of the Hamiltonians (135) and (136) provides that the state de-
scribing functions in the likelihood (131) include a common factor.

f̃2((p−w(λ))2;λ) ≈ f̃M (p′
1;λ) f̃I(p

′
2 − 2w(λ);λ)

U(λ)f̃2((p−w(λ))2; 0) ≈ f̃M (p′
1;λ) e

−2iω(
p′
2
2
)λf̃I(p

′
2 − 2w(0); 0)

(137)

are the two nonrelativistic descriptions of the evolution of the state describing functions in
(131).

The cluster expansion (61) with (65) for the VEV of a single neutral scalar field provides
that the VEV that define the scalar product for the two-argument function subspace are

W̃2,2((p)4) = Ũ2,2(((p)4) + W̃2(p1, p3)W̃2(p2, p4) + W̃2(p1, p4)W̃2(p2, p3). (138)

The connected functions are

W̃2((p)2) = 2
√
ω1ω2 δ(p1 + p2)

2∏
j=1

δ(p2j − λ−2
c )

Ũ2,2((p)4) = c4 δ(p1 + p2 + p3 + p4)

4∏
j=1

δ(p2j − λ−2
c )

from (37) and (54).
The frequency domain representation (114) of the scalar product with the single neutral

scalar field VEV (138) and state describing functions (132) is

⟨φ2(λ
′)|φ2(λ)⟩ =

∫
d(p)4 e

i(p1−p2)·u(λ′)f̃2((p−w(λ′))2;λ′)

×e−i(p3−p4)·u(λ)f̃2((p−w(λ))3,4;λ)

×
{

4

λ2c
δ(p1−p3)δ(p2−p4) + c4δ(ω1+ω2−ω3−ω4)δ(p1+p2−p3−p4)

}
≈
(
1
4

)3 ∫
d(p′)4 e

ip′
2·u(λ′)f̃2((p−w(λ′))2;λ′) e−ip′

4·u(λ)f̃2((p−w(λ))3,4;λ)

×
{

4

λ2c
δ(p′

1−p′
3)δ(p

′
2−p′

4) + c4δ(2ω(
p′
2
2 )−2ω(p

′
4
2 ))δ(p′

1−p′
3)

}
(139)

with the change to Jacobi coordinates (134) and in nonrelatistic approximation. The δ(p′
!−p′

3)
factor is conservation of momentum and is common among the remaining free field VEV and
four-point connected VEV contributions. The

δ(p1−p4)δ(p2−p3)
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“cross” term from the free field contribution to VEV is negligible for state describing functions
that have a reliable quantum-classical correspondence. State describing functions that have a
reliable quantum-classical correspondence satisfy isolation (105). The Pauli-Jordan two-point
function has an exponential spatial decline in space-like directions characterized by ∥u(λ)∥/λc
and if separations ∥u(λ)∥ are large compared to λc, the contribution of the δ(p1−p4)δ(p2−p3)
term is negligible.

Three scalar products contribute to |I(λ)|2 in (131). Designate a generalized function in
the scalar product (139) as

T4(p
′
2,p

′
4) :=

1

λ2c
δ(p′

2−p′
4) +

c4
4
δ(2ω(

p′
2
2 )−2ω(p

′
4
2 ))

=
1

λ2c
δ(p′

2−p′
4) +

c4
λc
δ(p′2

2 − p′2
4 )

(140)

after the substitution

δ(2ω(
p′
2

2
)− 2ω(

p′
4

2
)) = 4ω(

p′
2

2
)δ(p′2

2 − p′2
4 )

and the nonrelativistic approximation ω(
p′
2
2 ) ≈ λ−1

c . Then, substitution of the state description
(137) and VEV (140) into (139) results in

⟨U(λ)φ2(0)|φ2(λ)⟩ ≈
(
1
4

)2 ∫
dp |f̃M (p;λ)|2

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

×e2iω(
p′
2
2
)λeip

′
2·u(0)e−ip′

4·u(λ) f̃I(p′
2 − 2w(0); 0) f̃I(p

′
4 − 2w(λ);λ)

denoted the mixed scalar product and

⟨φ2(λ)|φ2(λ)⟩ ≈
(
1
4

)2 ∫
dp |f̃M (p;λ)|2

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

×eip′
2·u(λ)e−ip′

4·u(λ) f̃I(p′
2 − 2w(λ);λ) f̃I(p

′
4 − 2w(λ);λ)

provides the square of both norms, ∥φ2(0)∥ and ∥φ2(λ)∥. From unitary realization of time
translation U(λ), it follows that ∥U(λ)φ2(0)∥ = ∥φ2(0)∥. Due to the unimodular phase in
(136), the summation ∫

dp |f̃M (p;λ)|2 =
∫
dp |f̃M (p; 0)|2

does not vary with time λ and becomes a common factor of the three scalar products of interest.
Designate the common factor in the three scalar products composing the likelihood (131)

ag :=

(
1

4

)2 ∫
dp |f̃M (p;λ)|2. (141)
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Common factors do not contribute to the likelihood (131). Also, since likelihood depends only
on the magnitude of the mixed scalar product, unimodular factors eiϕI(λ) do not contribute.

A Taylor theorem polynomial expansion for 2ω(
p′
2
2 ) is

2ω(
p′
2

2
) ≈ 2ω(w(λ)) +

w(λ) · (p′
2 − 2w(λ))

ω(w(λ))
+

(p′
2 − 2w(λ))2

4ω(w(λ))

from (239) in appendix 6.13. Expansion is about the dominant momentum 2w(λ) in the support
over p′

2. The support of the description of the internals is nonrelativistic if

∥p′
2 − 2w(λ)∥ ≪ λ−1

c ≤ ω(w(λ))

within the dominant support of f̃I and the corresponding classical trajectory is nonrelativistic
if ∥w(λ)∥ ≪ λ−1

c . For nonrelativistic momenta, the Hamiltonian that describes the evolution
of the internals is

2ω(
p′
2
2 ) ≈ 2λ−1

c + λcw(λ)2 + λcw(λ) · (p′
2 − 2w(λ)) +

λc
4
(p′

2 − 2w(λ))2

= 2λ−1
c +

λc
4
p′2
2

(142)

to second order in small quantities λc∥p′
2 − 2w(λ)∥ ≪ 1 and λc∥w(λ)∥ ≪ 1.

With nonrelativistic approximation for the Hamiltonian, time translations of a Gaussian
internals describing function remains in family. Selection of a Gaussian to describe the internals,

f̃I(p;λ) := e2iu(λ)·w(λ) exp(−L(λ)2p2), (143)

satisfies localization (102) with a dominant momentum (103), is spherically symmetric, and
with the nonrelativistic approximation, U(λ)f̃I(p; 0) is also Gaussian. L(λ) is a complex length
characterizing the breadth of the spatial support. In (143)

Re(L(λ)2) > 0.

Real L(0)2 are the most classical-like state describing functions, meeting the Heisenberg un-
certainty lower bound for simultaneous knowledge of location and momentum: complex L(0)2

exceed the lower uncertainty bound with additional spreading in location for a constant spread
in momentum. The translated functions

e−ip·u(λ) f̃I(p− 2w(λ);λ) = exp
(
−L(λ)2(p−2w(λ))2 − i(p−2w(λ))·u(λ)

)
have inverse Fourier transforms(

1

2L(λ)2

) 3
2

exp

(
−(x− u(λ))2

4L(λ)2
+ 2iw(λ)·x

)
.
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To satisfy a nonrelativistic quantum-classical correspondence, the support spread parameter
L(λ)2 is constrained by both upper and lower bounds. An upper bound

|L(λ)|4

Re(L(λ)2)
≪ u2

limits spatial extent to isolate support from the support of the other spatial argument (105). A
lower bound suppresses support on relativistic momenta (109). The dominant support of the
internals describing function (143) satisfies

∥p− 2w(λ)∥ ≤ K

(Re(L(λ)2))
1
2

for a real K ≈ 10. If

∥p− 2w(λ)∥ ≤ K

(Re(L(λ)2))
1
2

≪ 1

λc

and if the classical trajectory is nonrelativistic, λc∥wλ∥ ≪ 1, then the dominant support is
nonrelativistic. For a nonrelativistically supported function (143),

Re(L0(λ)
2)≫ λ2c . (144)

Substitution of the Gaussian internals describing function (143) into the scalar product
results in

⟨U(λ)φ2(0)|φ2(λ)⟩ ≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

×e2iω(
p′
2
2
)λei(p

′
2−2w(0))·u(0)e−i(p′

4−2w(λ))·u(λ)e−L(0)2(p′
2−2w(0))2 e−L(λ)2(p′

4−2w(λ))2
(145)

for the mixed scalar product and

⟨φ2(λ)|φ2(λ)⟩ ≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

×ei(p′
2−p′

4)·u(λ)e−L(λ)2(p′
2−2w(λ))2 e−L(λ)2(p′

4−2w(λ))2
(146)

for the squared norms. Notation includes the single scalar field VEV (140) and the common
factor (141) that includes the description of the center-of-momentum.

With Re(L(λ)2) > 0 and u(λ),w(λ) ∈ R, after evaluation of the delta functions, the rapid
decline of Gaussian functions ensures convergence of the scalar products (145) and (146). From
the dominated convergence theorem, derivatives of the scalar products are summations of the
derivatives of state describing functions. With the designations (129), Sm = ⟨U(λ)φ2(0)|φ2(λ)⟩
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from (145) and Sλ = ⟨φ2(λ)|φ2(λ)⟩ from (146), the derivatives of the scalar products with
respect to the components of u(λ) are

∂Sm
∂u(λ)

≈ −iag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) (p

′
4 − 2w(λ))

×e2iω(
p′
2
2
)λe−i(p′

4−2w(λ))·u(λ)ei(p
′
2−2w(0))·u(0) e−L(0)2(p′

2−2w(0))2 e−L(λ)2(p′
4−2w(λ))2

(147)

for the mixed scalar product and

∂Sλ
∂u(λ)

≈ iag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) (p

′
2 − p′

4)

×ei(p′
2−p′

4)·u(λ)e−L(λ)2(p′
2−2w(λ))2 e−L(λ)2(p′

4−2w(λ))2
(148)

for the λ > 0 squared norms. The λ = 0 squared norms are independent of u(λ), u̇(λ) and λ.
Similarly, the partial derivatives of the scalar products with respect to the components of

u̇(λ) = λcw(λ) in the nonrelativistic approximation (109) are

∂Sm
∂u̇(λ)

≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)
(
2iλ−1

c u(λ) + 4λ−1
c L(λ)2(p′

4 − 2w(λ))
)

×ei(p′
2−2w(0))·u(0) e−L(0)2(p′

2−2w(0))2 e−L(λ)2(p′
4−2w(λ))2 e2iω(

p′
2
2
)λe−i(p′

4−2w(λ))·u(λ)
(149)

for the mixed scalar product and

∂Sλ
∂u̇(λ)

≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) 4λ

−1
c

(
L(λ)2(p′

2−2w(λ)) + L(λ)2(p′
4−2w(λ))

)
×ei(p′

2−p′
4)·u(λ)e−L(λ)2(p′

2−2w(λ))2 e−L(λ)2(p′
4−2w(λ))2

(150)

for the λ > 0 squared norms.
Finally, the partial derivatives of the scalar products with respect to λ with u(λ) and u̇(λ)

held constant are

∂Sm
∂λ
≈ ag

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

(
2iω(

p′
2
2 )− dL(λ)2

dλ
(p′

4 − 2w(λ))2
)

×ei(p′
2−2w(0))·u(0)e−i(p′

4−2w(λ))·u(λ) e−L(0)2(p′
2−2w(0))2e2iω(

p′
2
2
)λ e−L(λ)2(p′

4−2w(λ))2
(151)

for the mixed scalar product and

∂Sλ
∂λ
≈ ag

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

(
−dL(λ)

2

dλ
((p′

2−2w(λ))2− dL(λ)
2

dλ
(p′

4−2w(λ))2)

)
×ei(p′

2−p′
4)·u(λ)e−L(λ)2(p′

2−2w(λ))2 e−L(λ)2(p′
4−2w(λ))2

(152)

for the λ > 0 squared norms. In nonrelativistic approximation, ω(
p′
2
2 ) ≈ λ−1

c .
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4.4.2 Brief interval and limited acceleration approximations

Approximations that apply for sufficiently brief intervals λ enable evaluation of the expressions
for the scalar products and their first derivatives (145)-(152) as elementary functions. Except
for the nonrelativistic approximation of the Hamiltonian that limits the interval λ, only non-
relativistic approximations have been applied to this point. In this section, brief interval and
iimited acceleration approximations are developed.

If the quantum-classical correspondence is examined for sufficiently brief intervals λ > 0,
then Taylor theorem polynomial approximation to first order in λ suffices.

u(λ) ≈ u(0) + λu̇(0)

w(λ) ≈ w(0) + λẇ(0)
(153)

and for nonrelativistic momenta, λcw(λ) ≈ u̇(λ). The Gaussian state describing functions
(143),

e−ip·u(λ)f̃I(p− 2w(λ);λ)

and
e2iω(

p
2
)e−ip·u(0)f̃I(p− 2w(0); 0)

are simply related to O(λ2) for nonrelativistic momenta (109).

e−ip·u(λ)f̃I(p− 2w(λ);λ) = e−i(p−2w(λ))·u(λ)e−L(λ)2(p−2w(λ))2

≈ e−2iω(p
2
)λe−iϕI(λ) e−i(p−2w(0))·u(0)e−L(0)2(p−2w(0))2 e4L(0)

2(p−2w(0))·ẇ(0)λ

= e2iω(
p
2
)e−iϕI(λ) e4L(0)

2(p−2w(0))·ẇ(0)λ e−ip·u(0)f̃I(p− 2w(0); 0).

(154)

The relationship (154) includes an envelope evolution correction factor e4L(0)
2(p−2w(0))·ẇ(0)λ, the

unimodular factor e−iϕI(λ) and the temporal translation e2iω(
p
2
). The brief interval approxima-

tion (154) follows from Taylor theorem expansion if the ϕI(λ) from (118) is

ϕI(λ) = −(2 + u̇(0)2 + 2ü(0) · u(0)) λ
λc
, (155)

and if

L(λ)2 = L(0)2 − iλc
4
λ. (156)

This L(λ)2 from (143) describes the support spread from nonrelativistic free propagation of a
Gaussian function [24] in Jacobi coordinates (134). The phase (155) corresponds to the classical
energy of two nonrelativistic particles.

2mc2 +K.E. + V = mc2 (2 + u̇(0)2 + 2ü(0) · u(0)).
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λcmc
2 = ℏc. The rest mass energy is 2, the kinetic energy of the two particles is u̇(0)2, and

the pair potential V is identified in more familar form in section 4.4.6 below. If the trajectories
satisfy Newton’s equation of motion, this energy is independent of λ.

Demonstration of (154) begins with Taylor polynomial approximation (142) of the Hamil-
tonian.

2iω(p2 )λ+ i(p−2w(0)) · u(0) + L(0)2(p−2w(0))2

≈ iλ(2λ−1
c + λcw(0)2 +

λc
4
p2) + i(p−2w(0)) · u(0) + L(0)2(p−2w(0))2

≈ iλ(2λ−1
c + λcw(0)2 +

λc
4
p2) + i(p−2w(λ)) · u(λ) + L(0)2(p−2w(0))2

−iλ(p−2w(0))u̇(0) + 2iλẇ(0) · u(0)

from substitutions of the linear approximations (153) and neglect of O(λ2) terms. From the
identity in the nonrelativistic approximation for energy (142), the nonrelativistic relation λcw ≈
u̇, and substitution of the linear expansions (153),

2iω(p2 )λ+ i(p−2w(0)) · u(0) + L(0)2(p−2w(0))2

≈ i λ
λc

(2 + u̇(0)2 + 2ü(0) · u(0)) + iλ((p− 2w(λ)) · u̇(λ) + λc
4
(p− 2w(λ))2)

+i(p−2w(λ)) · u(λ) + L(0)2(p−2w(0))2 − iλ(p−2w(0))u̇(λ)

≈ i λ
λc

(2 + u̇(0)2 + 2ü(0) · u(0)) + i(p−2w(λ)) · u(λ) + iλ
λc
4
(p− 2w(λ))2)

+L(0)2(p−2w(0))2

neglecting O(λ2) terms. The linear expansion (153) and neglecting O(λ2) terms provides that

L(λ)2(p−2w(λ))2 = L(0)2(p−2w(0))2 − 4L(0)2(p−2w(0)) · ẇ(0)λ+O(λ2).

Finally, the identifications (155) and (156) demonstrate (154).
Neglecting terms of O(λ2) in the brief interval expansion, the resulting envelope evolution

correction factor does not vary with time for any of the parameters L(λ)2, u(λ), nor u̇(λ).

e−4L(0)2(p−2w(0))·ẇ(0)λ ≈ e−4L(0)2(p−2w(0))·(ẇ(0)+λẅ(0))λ

≈ e−4L(0)2(p−2w(0)−2λẇ(0))·ẇ(λ)λ

≈ e−4(L(0)2−iλc
4
λ)(p−2w(λ))·ẇ(λ)λ

= e−4L(λ)2(p−2w(λ))·ẇ(λ)λ.

(157)

An acceleration limitation is convenient to analyze the quantum-classical correspondence
(118) by justifying neglect of the envelope evolution correction factor. The envelope evolution
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correction in the approximation (154) is negligible either with an acceleration limit, or after ap-
plication of dominant momentum (103) in (167) below. From the Cauchy-Schwarz-Bunyakovsky
inequality,

|(p−2w(0)) · ẇ(0)| ≤ ∥p−2w(0)∥ ∥ẇ(0)∥.

If the initial acceleration in the brief interval approximation is limited,

∥ẇ(0)∥ ≤ ϵ

u2
, (158)

then
|(p−2w(0)) · ẇ(0)| ≤ ∥p−2w(0)∥ ϵ

u2

and the envelope evolution correction factor e4L(0)
2(p−2w(0))·ẇ(0)λ is negligible compared to the

envelope,

4Re(L(0)2)∥p−2w(0)∥ ϵ
u2
λ≪ Re(L(0)2)(p−2w(0))2,

as long as
4ϵλ

u2
≪ ∥p−2w(0)∥.

The support of the summation evaluating a scalar product includes p ≈ 2w(0) but the enve-
lope evolution correction is small in the neighborhood of these points. To approximate scalar
products, the bound need only apply for p where the envelope deviates significantly from unity,
p that satisfy √

Re(L(0)2) ∥p−2w(0)∥ ≥ ϵ.

An accurate approximation for the scalar product results if ϵ≪ 1. Then, the envelope evolution
factor is well approximated by unity if the interval λ is bounded,

λ≪ u2

4
√
Re(L(0)2)

.

This upper bound on λ increases with greater initial separations ∥u∥. With the acceleration
limit (158) and for the sufficiently brief intervals λ, the envelope evolution correction factor
(157) contributed by substitutions of (159) are negligible,

e4L(0)
2qj ·ẇ(0)λ ≈ 1.

Finally, the nonrelativistic, brief interval, limited acceleration approximation is

e−i(p−2w(λ))·u(λ)e−L(λ)2(p−2w(λ))2 ≈ e−iϕI(λ)e−2iω(p
2
)λ e−i(p−2w(0))·u(0)e−L(0)2(p−2w(0))2 . (159)
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Substitution of the brief interval, limited acceleration approximation (159) into the mixed
scalar product (145) and squared norms (146) result in

Sm = ⟨U(λ)φ2(0)|φ2(λ)⟩

≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) e

2iω(
p′
2
2
)λei(p

′
2−2w(0))·u(0) e−L(0)2(p′

2−2w(0))2

×e−i(p′
4−2w(λ))·u(λ) e−L(λ)2(p′

4−2w(λ))2

≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) e

2iω(
p′
2
2
)λei(p

′
2−2w(0))·u(0)e−L(0)2(p′

2−2w(0))2

×e−iϕI(λ)e−2iω(
p′
4
2
)λ e−i(p′

4−2w(0))·u(0)e−L(0)2(p′
4−2w(0))2

and

Sλ = ⟨φ2(λ)|φ2(λ)⟩

≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) e

i(p′
2−2w(λ))·u(λ) e−L(λ)2(p′

2−2w(λ))2

×e−i(p′
4−2w(λ))·u(λ) e−L(λ)2(p′

4−2w(λ))2

≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) e

iϕI(λ)e2iω(
p′
2
2
)λ ei(p

′
2−2w(0))·u(0)e−L(0)2(p′

2−2w(0))2

×e−iϕI(λ)e−2iω(
p′
4
2
)λ e−i(p′

4−2w(0))·u(0)e−L(0)2(p′
4−2w(0))2 .

The Hamiltonian derived factors e2i(ω(
p′
2
2
)−ω(p

′
4
2
))λ = 1 due either to conservation of momentum,

p′
2 = p′

4, from the free field VEV or conservation of energy,

2ω(
p′
2

2
) = 2ω(

p′
4

2
)

from the connected VEV. The unimodular phase factor e−iϕi(λ) contributed by substitution of
(159) distributes out of the summation and therefore does not contribute to likelihood (131).
The approximations for the scalar products neglect terms of O(λ2), are to second order in the
nonrelativistic approximation (109), and apply for limited accelerations (158). The approxima-
tions are to second order in the small quantities

λc∥p′
2−2w(0)∥, λc∥p′

4−2w(0)∥ and λc∥w(0)∥ ≪ 1.

Factors
ei(p

′
2−2w(0))·u(0)e−i(p′

4−2w(0))·u(0) = ei(p
′
2−p′

4)·u(0)

from the common time of the brief interval approximation in (159). Simplification results in

Sm ≈ age−iϕI(λ)

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) e

i(p′
2−p′

4)·u(0)e−L(0)2(p′
2−2w(0))2e−L(0)2(p′

4−2w(0))2

Sλ ≈ ag
∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) e

i(p′
2−p′

4)·u(0)e−L(0)2(p′
2−2w(0))2e−L(0)2(p′

4−2w(0))2
(160)
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That the scalar products
Sm = Sλ = S0

at λ = 0 follows from (118).

4.4.3 A functional Q(F (q2,q4))

In this section, the nonrelativistic, brief interval approximations for the scalar products and
their derivatives (145)-(152) are expressed using a convenient functional.

To abbreviate notation here and in sections 4.4.4-4.4.6, designations for the initial conditions
of the classical trajectories are abbreviated

u := u(0), u̇ := u̇(0), w := w(0), and ẇ := ẇ(0). (161)

For brief λ > 0, time evolution of the classical dynamical variables is linearly approximated
(153).

The functional Q maps multinomials F (q2,q4) of two spatial vectors q2,q4 ∈ R3 to C. the
function is

Q(F (q2,q4)) := ag

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4) F (p

′
2−2w,p′

4−2w)

×eb2·p′
2+b4·p′

4e−σ2(p′
2−2w)2 e−σ2(p′

4−2w)2 .
(162)

Q(F (q2,q4)) results in the brief interval, nonrelativistic approximations to the scalar products
(160) and their first derivatives (145)-(152) using the approximation (159) from section 4.4.2.
The generalized function T4(p

′
2,p

′
4) is from the VEV (140) and ag is from (141). σ2, b2 and b4

are independent complex parameters. Q(F (q2,q4)) is linear.

Q(αF1 + βF2) = αQ(F1) + βQ(F2)

for α, β ∈ C and multinomials F!(q2,q4), F2(q2,q4). qj is an abbbreviated notation indicating
a factor of p′

j−2w in the summation. After evaluation of the momentum and energy conser-
vation generalized functions from T4 (140), the summation (162) is absolutely convergent. The
dominated convergence theorem justifies interchange of summation and differentiation. Then

Q(F (q2,q4)) = ag

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

×F ( ∂
∂b2
−2w, ∂

∂b4
−2w) eb2·p′

2+b4·p′
4e−σ2(p′

2−2w)2 e−σ2(p′
4−2w)2

= F (
∂

∂b2
−2w, ∂

∂b4
−2w)Q(1).

(163)
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The values of physical interest result from substitution of the initial location u and complex
squared length L(0)2,

σ2 := L(0)2

b2 := iu
b4 := −iu.

(164)

Q(1) is evaluated in elementary functions in section 4.4.4.
If b2 = b4, then Q(F (q2,q4)) is transpose conjugate symmetric. Transpose symmetry of

the real T4(p
′
2,p

′
4) (140) and relabeling of the summation variables p′

2 ↔ p′
4 demonstrates that

Q(F (q2,q4)) = Q(F (q4,q2) ). (165)

From (165), Q(F (q2,q4)) is real for real, transpose symmetric multinomials,

F (q2,q4) = F (q4,q2) = F (q2,q4), (166)

and Q(F (q2,q4)) is imaginary for real, transpose antisymmetric multinomials,

F (q2,q4) = −F (q4,q2) = F (q2,q4).

Without the acceleration limit (158), the brief interval approximation (159) retains envelope
evolution factors (157), e−4L(0)2(p−2w(0))·ẇ(0)λ. Without an acceleration limit and neglecting
the overall phase e−iϕI(λ) that does not contribute to likelihood, substitution of (162) results in

⟨U(λ)φ2(0)|φ2(λ)⟩ ≈ Q(e4λL(0)
2q4·ẇ)

≈ Q(1) + 4λL(0)2Q(q4 · ẇ)

for the mixed scalar product and

⟨φ2(λ)|φ2(λ)⟩ ≈ Q(e4λL(0)
2q2·ẇe4λ(L(0)

2q4·ẇ)

≈ Q(1) + 4λL(0)2Q(q2 · ẇ) + 4λL(0)2Q(q4 · ẇ)

for the squared norms. These expression include the abbreviated notation (161) for the initial
trajectory. From conjugate symmetry (165),

Q(q2 · ẇ) = Q(q4 · ẇ).

First order in λ Taylor theorem polynomial approximation of the envelope evolution factors
(157), linearity and the conjugate symmetry (165) of Q(F ) provide that the likelihood (131) is

|I(λ)|2 ≈ |Q(1) + 4λL(0)2Q(q4 · ẇ)|2

Q(1)(Q(1) + 4λL(0)2Q(q4 · ẇ) + 4λL(0)2Q(q4 · ẇ))

= 1 +O(λ2).
(167)
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This brief interval, nonrelativistic approximation follows from the more general result (124).
Q(1) is real from (166). This result also provides that to O(λ2), the derivatives (145)-(152)
of the likelihood |I(λ)|2 are invariant to whether the envelope evolution correction factor is
included if a dominant momentum approximation (103) suffices.

Brief interval, nonrelativistic and limited acceleration approximations for the scalar products
and their derivatives (145)-(152) are compactly expressed using the functional Q(F (q2,q4)).
From (160) for the scalar product,

Sm ≈ Sλ ≈ Q(1) (168)

and derivatives follow from the identification of multinomials F (q2,q4) from (147)-(152) in sec-
tion 4.4.1. Q(F ) is evaluated from (163) and Q(1). Q(1) does not vary with λ; the multinomials
F (q2,q4) include variation with λ.

4.4.4 Gaussian quadratures

In this section, brief interval, nonrelativistic approximation of the functional Q(1) is evaluated
for a range of trajectories determined by u, u̇. From (163), all Q(F ) of interest follow as
derivatives of Q(1). For this evaluation, the free field VEV contribution is distinguished from
the connected VEV contribution,

Q(F ) := QF (1) +QC(1), (169)

with

QF (1) =
ag
λ2c

∫
dp′

2dp
′
4 δ(p

′
2−p′

4) e
p′
2·b2+p′

4·b4e−σ2(p′
2−2w)2 e−σ2(p′

4−2w)2

and

QC(1) =
agc4
λc

∫
dp′

2dp
′
4 δ(p

′2
2 −p′2

4 ) e
p′
2·b2+p′

4·b4e−σ2(p′
2−2w)2 e−σ2(p′

4−2w)2

from the definitions (140) for T4 and (162) for Q(F ).
Evaluation of QF (1) and QC(1) follows from the Gaussian quadrature

√
σ2
∫ ∞

−∞
ds e−σ2s2+βs =

√
π eβ

2/(4σ2) (170)

for σ2, β ∈ C with Re(σ2) > 0.
It is convenient to introduce compact notation for the complex length parameter,

σ2 = σ2R + iσ2Q (171)

with σ2R, σ
2
Q ∈ R and σ2R > 0.
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From (169), evaluation of the momentum conservation delta function, ea+b = eaeb, trans-
lation of the summation variables, and substitution of the Gaussian summation (170) result
in

QF (1) =
ag
λ2c

∫
dp′

2 e
p′
2·(b2+b4) e−2σ2

R(p′
2−2w)2

=
ag
λ2c
e2w·(b2+b4)

∫
dp′

2 e
p′
2·(b2+b4) e−2σ2

R p′2
2

=
ag
λ2c

(
π

2σ2R

) 3
2

e2w·(b2+b4)e
(b2+b4)

2

8σ2
R

(172)

for the free field VEV contribution to Q(1).
Expressing the summations in spherical coordinates is convenient to evaluate the energy

conservation delta function in the connected VEV contribution QC(1) to Q(1). Factoring the
Gaussian functions in (169) provides that

QC(1) =
c4ag
λc

e−8σ
2
Rw2

∫
dp′

2dp
′
4 δ(p

′2
2 −p′2

4 )

×ep′
2·(b2+4σ2w)ep

′
4·(b4+4σ2w)e−σ

2p′2
2 e−σ

2p′2
4 .

(173)

A selection of b2 = σ2c2, b4 = σ2c4 with c2, c4 ∈ R3 results in b2+4σ2w and b4+4σ2w
that are complex constants times real spatial vectors. Then, spherical coordinates simplify the
summations in (173). Subsequently, the result from evaluation of the energy conserving delta
function and summations is analytically extended to evaluate QC(1) at the physical values of
interest, b2 = −b4 = iu.

A change of summation variables to spherical coordinates

p′
j = (ρ′

j cos θj cosϕj , ρ
′
j sin θj cosϕj , ρ

′
j sinϕj)

with the zj-axes aligned with the real vectors cj + 4w sets

p′
j · (bj+4σ2w) = ρ′

jrj sinϕj .

j = 2, 4 and

r2 = σ2
(
(c2 + 4w)2

) 1
2

=
(
(b2 + 4σ2w)2

) 1
2

r4 = σ2
(
(c4 + 4w)2

) 1
2

=
(
(b4 + 4σ2w)2

) 1
2

(174)
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with Re(rj) > 0 from Re(σ2) > 0. Rotational invariance of the state describing function (143)
justifies the selection of axes. With the change to spherical coordinates,

QC(1) =
c4ag
λc

e−8σ2
Rw2

∫ ∞

0
ρ′2
2 dρ

′
2

∫ ∞

0
ρ′2
4 dρ

′
4 δ(ρ

′2
2 − ρ′2

4 ) e
−σ2ρ′2

2 e−σ2ρ′2
4

×
∫ 2π

0
dθ2

∫ π
2

− π
2

cosϕ2dϕ2 e
ρ′
2r2 sinϕ2

∫ 2π

0
dθ4

∫ π
2

− π
2

cosϕ4dϕ4 e
ρ′
4r4 sinϕ4 .

The θj and ϕj summations are elementary.∫ 2π

0
dθj

∫ π
2

− π
2

cosϕj dϕj e
ρ′

jrj sinϕj = 2π
eρ

′
jrj − e−ρ′

jrj

ρ′
jrj

.

The ρ′
j summations are∫ ∞

0
ρ′2
j dρ

′
j

eρ
′
jrj−e−ρ′

jrj

ρ′
jrj

h(ρ′2
j ) =

∫ ∞

0
ρ′
jdρ

′
j

eρ
′
jrj

rj
h(ρ′2

j )−
∫ ∞

0
ρ′
jdρ

′
j

e−ρ′
jrj

rj
h(ρ′2

j )

=

∫ ∞

0
ρ′
jdρ

′
j

eρ
′
jrj

rj
h(ρ′2

j )−
∫ −∞

0
ρ′
jdρ

′
j

eρ
′
jrj

rj
h((−ρ′

j)
2)

=

∫ ∞

−∞
ρ′
jdρ

′
j

eρ
′
jrj

rj
h(ρ′2

j )

from reflection of the summation variable in the second term. Denoted by h(ρ′2
j ), both the Gaus-

sian functions and energy conservation delta function are even functions of the ρ′
j . Substitution

of these summations into QC(1) then provides that

QC(1) = (2π)2
c4ag
λc

e−8σ2
Rw2

∫ ∞

−∞
ρ′
2dρ

′
2

∫ ∞

−∞
ρ′
4dρ

′
4δ(ρ

′2
2 −ρ′2

4 )e
−2σ2

Rρ
′2
2
eρ

′
2r2+ρ

′
4r4

r2r4
.

The delta function [19] is

δ(ρ′2
2 −ρ′2

4 ) =
δ(ρ′

2−ρ′
4)

2|ρ′
2|

+
δ(ρ′

2+ρ
′
4)

2|ρ′
2|

and then

QC(1) =
2π2c4ag
λcr2r4

e−8σ2
Rw2

∫ ∞

−∞
|ρ′

2|dρ′
2 e

−2σ2
Rρ

′2
2

(
eρ

′
2(r2+r4) − eρ′

2(r2−r4)
)
. (175)

Reflecting the summation variable in the domain (−∞, 0), the remaining summation reorganizes
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to ∫ ∞

−∞
|ρ′

2|dρ′
2 e

−2σ2
Rρ

′2
2

(
eρ

′
2(r2+r4) − eρ′

2(r2−r4)
)

=

∫ ∞

0
|ρ′

2|dρ′
2 e

−2σ2
Rρ

′2
2

(
eρ

′
2(r2+r4) − eρ′

2(r2−r4)
)

−
∫ 0

∞
|ρ′

2|dρ′
2 e

−2σ2
Rρ

′2
2

(
e−ρ′

2(r2+r4) − e−ρ′
2(r2−r4)

)
=

∫ ∞

0
ρ′
2dρ

′
2 e

−2σ2
Rρ

′2
2

(
eρ

′
2(r2+r4) − eρ′

2(r2−r4) + e−ρ′
2(r2+r4) − e−ρ′

2(r2−r4)
)

=

∫ ∞

0
ρ′
2dρ

′
2 e

−2σ2
Rρ

′2
2

(
eρ

′
2r2 − e−ρ′

2r2 )( eρ
′
2r4 − e−ρ′

2r4
)
.

For large real components of r2, r4, a convenient approximation applies. If

Re(r2),Re(r4)≫ 0,

then the dominant support of the integrand is for large ρ′
2 and

eρ
′
2rj ≫ e−ρ′

2rj .

Neglect of the smaller terms and inclusion of the weakly weighted summation over ρ′
2 ∈ (−∞, 0)

approximates (175) when Re(r2),Re(r4) from (174) are suffiently large. With this approxima-
tion,∫ ∞

0
ρ′
2dρ

′
2 e

−2σ2
Rρ

′2
2

(
eρ

′
2r2−e−ρ′

2r2 )( eρ
′
2r4−e−ρ′

2r4
)
≈
∫ ∞

−∞
ρ′
2dρ

′
2 e

−2σ2
Rρ

′2
2 eρ

′
2(r2+r4)

=
∂

∂µ

∫ ∞

−∞
dρ′

2 e
−2σ2

Rρ
′2
2 eρ

′
2(r2+r4+µ)

=
∂

∂µ

(
π

2σ2R

) 1
2

e
(r2+r4+µ)2

8σ2
R

=

(
π

2σ2R

) 1
2
(
r2 + r4
4σ2R

)
e

(r2+r4)
2

8σ2
R

from the Gaussian summation (170) and evaluated at µ = 0. Sufficiently large r2, r4 is de-
termined to set the peak of the dominant support of e−2σ2

Rρ
′2
2 +ρ′

2(r2+r4) much greater than the
width of the support. The envelope of the support is determined by the real component σ2R of
σ2. The width of support is determined from

e−2σ2
Rρ

′2
2 +ρ′

2Re(r2+r4) = e−2σ2
R(ρ′

2−ρo)2e4σ
2
Rρ

2
o

for ρo = Re(r2 + r4)/(4σ
2
R), the value of ρ′

2 at the peak of the envelope of support. Then large
rj is

Re(r2 + r4)≫ 8
√
σ2R (176)
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for r2, r4 that are the analytic extensions of (174). This approximation cannot be arbitrarily
accurate with σ2R → 0 due to the bound that ensures the support of the state describing function
(143) is nonrelativistic.

σ2R ≫ λ2c

from (144). Finally, substitution provides

QC(1) ≈
2π2c4ag
λc

(
π

2σ2R

) 1
2 e−8σ2

Rw2

4σ2R

(
r2 + r4
r2r4

)
e

(r2+r4)
2

8σ2
R (177)

for b2 = σ2c2 and b4 = σ2c4 with real cj .
The value of QC(1) of physical interest has bj from (164). In (177), the bj are extended in

C3. After analytic extension,

r2 =
(
(iu+ 4σ2w)2

) 1
2

r4 =
(
(−iu+ 4σ2w)2

) 1
2

and then
r2 = r4. (178)

Singularities in the analytic extension of the approximation (177) for QC(1) include simple
divergences at rj = 0 and cut lines due to the multiple sheets of the square root (174) in rj .
Cut lines are oriented toward negative real values of the rj to avoid the large positive real values
of interest. With

r2j := aj + ibj ,

aj , bj ∈ R, the root of r2j is selected to set Re(rj) ≥ 0. Then

Re(rj) =

√
1
2

(√
a2j + b2j + aj

)
Im(rj) = sgn(bj)

√
1
2

(√
a2j + b2j − aj

) (179)

from half-angle formulas for cosine and sine. With the notation (171) for complex σ2 = L(0)2,
the physical values of interest follow from

a4 = a2 = 16(σ4R − σ4Q)w2 − u2 + 8σ2Qu ·w

b4 = −b2 = 32σ2Rσ
2
Qw

2 − 8σ2Ru ·w.
(180)

The analytic extension of the quadrature of interest (173) with b2,b4 ∈ C3 equals the
summation (175) when

b2 = σ2c2
b4 = σ2c4
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and cj ∈ R3. The summation (175) analytically extends for b2,b4 ∈ C3 and within the regions
of holomorphy, this extension equals the extension of (173) by the identity theorem. Both
(175) and the approximation (177) are functions of r2, r4 that, with exclusion of the isolated
singularities and cut lines, are functions over b2,b4 ∈ C3. The approximation (177) applies for
b2,b4 ∈ C3 with Re(r2+r4)≫ 8

√
Re(L(0)2). If L(0)2, u2 and u̇2 satisfy the large rj condition

(176), then the analytic extension of the approximation (177) approximates QC(1).
Substitution of the values (164) into (172) and (177) provides the value of interest for Q(1)

in the notation (169),

QF (1) =
4ag
λ2c

(
π

2L(0)2R

) 3
2

QC(1) =
2π2c4ag
4L(0)2Rλc

(
π

2L(0)2R

) 1
2

e−8l(0)2Rw2

(
1

r2
+

1

r4

)
e

(r2+r4)
2

8L(0)2
R .

(181)

The rj are from (179) with (180). The conditions that produce the approximation of (181) are:

1. nonrelativistic momenta (109), u̇2 ≪ 1, L(0)2R ≫ λ2c and λcw = u̇ from (108)

2. significant body separation, u2 ≫ L(0)2R, enables the isolation (105) of support to identify
a classical body with a region of space and neglect the cross term in the VEV

3. sufficiently brief intervals to neglect O(λ2) corrections to evolution of the classical dy-
namical variables (153)

4. limited acceleration (158), ∥ü(0)∥ ≤ ϵλc/u
2, justifies neglect of the envelope evolution

correction. Limited error implies a sufficiently limited interval

5. large rj (176) enables approximation of the scalar products in elementary forms.

4.4.5 Zeros of the derivatives of likelihood |I(λ)|2

Following the development in section 4.3, zeros of the derivatives of likelihood |I(λ)|2 indicate
the most likely corresponding classical trajectory u(λ), (126) and (128). In this section, brief
interval, nonrelativistic, limited acceleration, large rj approximations of the derivatives of the
likelihood |I(λ)|2 are evaluated. The approximations for the derivatives of likelihood |I(λ)|2 are
identically zero to O(λ2) and do not discriminate a most likely trajectory. The nonrelativistic,
brief interval, limited acceleration, and large rj approximations for the zeroes of derivatives of
likelihood provide no insight into the corresponding classical trajectories. However, the deriva-
tive of the phase of I(λ) relates quantum and classical descriptions of the energy and identifies
a corresponding classical pair potential. This energy correspondence and the corresponding
classical pair potential are developed in section 4.4.6.
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The derivatives of Sm = ⟨U(λ)φ2(0)|φ2(λ)⟩ and Sλ = ⟨φ2(λ)|φ2(λ)⟩ are developed in section
4.4.1 and the brief interval, nonrelativistic approximations in terms of the functional Q(F ) are
from section 4.4.4. From (163), Q(F ) are derivatives of Q(1). Optimality conditions (130)

∂|I(λ)|2

∂β
= 0

are satisfied if and only if

Re
(

2

Sm

∂Sm
∂β

)
− 1

Sλ
Re
(
∂Sλ
∂β

)
= 0

with β a component of u(λ), a component of u̇(λ) or λ. From (160), the brief interval, nonrel-
ativistic, limited acceleration approximations include

Sm ≈ Sλ ≈ Q(1).

Expansions of the derivatives of the scalar products in real and imaginary components to
first order in λ are designated

∂Sm
∂β

:= cm + idm + λαm + iλϵm

∂Sλ
∂β

:= cλ + idλ + λαλ + iλϵλ

(182)

with cm, dm, αm, ϵm ∈ R and cλ, dλ, αλ, ϵλ ∈ R. In this notation,

Re
(

2

Sm

∂Sm
∂β

)
− 1

Sλ
Re
(
∂Sλ
∂β

)
= Re

(
2
cm + idm + λαm + iλϵm

Q(1)

)
−Re

(
cλ + idλ + λαλ + iλϵλ

Q(1)

)
=

2cm−cλ + λ(2αm − αλ)
Q(1)

to O(λ2). dm, dλ, ϵm, ϵλ do not contribute at the zeros of the first derivatives of |I(λ)|2. Since
Q(1) ̸= 0, the brief interval optimality conditions are satisfied if

2cm−cλ + λ (2αm−αλ) = 0 (183)

for each selection of β.
Like the brief interval approximation to scalar products (160), substitution of (159) provides

that the first derivatives of the scalar products are conveniently approximated with Q(F ). With
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the abbreviated notations (160), (161) and (162), the first derivatives of Sm with respect to
components of u(λ) are from (147),

∂Sm
∂u(λ)

= Q(−i(q4 − 2λẇ))

= −iQ(q4) + 2iλẇQ(1).

There is an offset by 2w of the summation variables p′
j from qj in the definition (162) of Q(F ),

and w(λ) is approximated as w + λẇ. In the designations (182), the contributions of Sm to
the derivative of likelihood |I(λ)|2 follow from

cm = Im(Q(q4))
αm = 0.

Derivatives of the squared norm Sλ follow similarly from (148),

∂Sλ
∂u(λ)

= Q(i(q2 − q4))

= iQ(q2−q4).

From transpose symmetry (165) of Q(F ),

iQ((q2 − q4) = 2Im(Q(q4))

In the designations of (182),
cλ = 2Im(Q(q4))
αλ = 0.

Substitution into (183) for β a component of u(λ) produces

0 = 2cm−cλ + λ (2αm−αλ)

= 2Im(Q(q4))− 2Im(Q(q4))

without constraint on the corresponding trajectory u(λ).
The derivatives of the mixed scalar product Sm with respect to the components of u̇(λ) are

from (149) in section 4.4.1.

λc
∂Sm
∂u̇(λ)

= Q(
(
2i(u+ λu̇) + (4L(0)2 − iλcλ)(q4 − 2λẇ)

)
)

= Q(
(
2iu+ 4L(0)2q4 + λ

{
2iu̇− iλcq4 − 8L(0)2ẇ)

})
)

= 2iuQ(1) + 4L(0)2Q(q4) + λ
{
(2iu̇− 8L(0)2ẇ)Q(1)− iλcQ(q4)

}
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from substitution of (156) for L(λ)2, and linear expansion (153) of u(λ) and w(λ). Then, in
the notation (182), the contributions of Sm to the derivative of likelihood |I(λ)|2 follow from

cm = 4Re(L(0)2Q(q4))
αm = −8Re(L(0)2)ẇQ(1) + λcIm(Q(q4))

with the common scaling by λ−1
c neglected. The derivatives of the squared norm Sλ are from

(150),

λc
∂Sλ
∂u̇(λ)

= Q
(
(4L(0)2 + iλcλ)(q2−2λẇ) + (4L(0)2 − iλcλ)(q4−2λẇ)

)
= Q(4L(0)2 (q2+q4−4λẇ) + iλcλ (q2−q4))

= 4L(0)2Q(q2+q4) + λ
{
−16L(0)2ẇQ(1)+iλcQ(q2−q4)

}
with substitution of (156) for L(λ)2. Q(q2+q4) is real from (166) and

Q(q2+q4) = 2Re(Q(q4))

iQ((q2 − q4) = 2Im(Q(q4))

from (165). In the designations of (182),

cλ = 8Re(L(0)2Q(q4))
αλ = −16Re(L(0)2)ẇQ(1) + 2λcIm(Q(q4))

with the common scaling by λ−1
c neglected.

Substitution into (183) for β a component of u̇(λ) produces

0 = 2cm−cλ + λ (2αm−αλ)

= 8Re(L(0)2Q(q4))− 8Re(L(0)2Q(q4))

+λ(−16Re(L(0)2)ẇQ(1) + 2λcIm(Q(q4)) + 16Re(L(0)2)ẇQ(1)− 2λcIm(Q(q4)))

also without constraint on the corresponding trajectory u(λ).
Finally, the partial derivative of the mixed scalar product Sm with respect to λ with u(λ)

and u̇(λ) held constant is from (151),

∂Sm
∂λ

= Q((2iλ−1
c − iλc

4 (q4 − 2λẇ)2) )

= Q((2iλ−1
c − iλc

4 q
2
4 + iλλc(q4 · ẇ)))

= 2iλ−1
c Q(1)− iλc

4 Q(q2
4) + iλ {λcQ(q4) · ẇ}
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from substitution of the expression (156) for L(λ)2, and linear expansion (153) of w(λ). Then,
in the notation (182), the contributions of Sm to the derivative of likelihood |I(λ)|2 follow from

cm = λ2c
4 Im(Q(q2

4))
αm = −λcIm(Q(q4)) · ẇ.

The squared norm is from (152),

∂Sλ
∂λ

= Q(iλc
4

(
(q2 − 2λẇ)2 − (q4 − 2λẇ)2

)
)

= iλc
4 Q(q2

2−q2
4) + λ {−iλcQ((q2−q4) · ẇ)} .

In the designations of (182),

cλ = λ2c
2 Im(Q(q2

4))
αλ = −2λcIm(Q(q4)) · ẇ.

Q(q2−q4) and Q(q2
2−q2

4) are imaginary from (166) and

iQ((q2 − q4) = 2Im(Q(q4))

iQ(q2
2−q2

4) = 2Im(Q(q2
4))

from (165).
Substitution into (183) for β = λ produces

0 = 2cm−cλ + λ (2αm−αλ)

= 2λ
2
c
4 Im(Q(q2

4))−
λ2c
2 Im(Q(q2

4))

+λ(−2λcIm(Q(q4)) · ẇ + 2λcIm(Q(q4)) · ẇ)

again without constraint on the corresponding trajectory u(λ).
A most likely trajectory u(λ) is not resolved in the nonrelativistic (109), brief interval

λ, limited acceleration (158), and large rj approximations of the derivatives of the likelihood
|I(λ)|2.

4.4.6 Energy correspondence and −g/r potentials

In this section, the correspondence of quantum and classical expressions for energy is exploited
to identify classical trajectories that correspond with the constructed, single neutral scalar field
realization of relativistic quantum physics. These classical particle approximations apply when
states are described by functions with isolated (105) concentrations of support well represented
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by a single location (102) and momentum (103), and the momentum support is nonrelativistic
(109).

In section 4.4.5, it is demonstrated that

∂|I(λ)|2

∂β
= O(λ2)

for β a component of u(λ), a component of u̇(λ), or λ. The definition (120) of ϕI(λ),

|⟨U(λ)φn(0)|φn(λ)⟩| = ⟨U(λ)φn(0)|eiϕI(λ)φn(λ)⟩,

provides that the temporal derivative of the phase of I(λ) and the derivative of ϕI(λ) relate the
classical energy from (155) with the energy of the state described by φ2(0).

Evaluated at λ = 0, with the notation (119) for normalized state describing functions φ2(λ),
and from (131), the chain rule and I(0) = 1, it follows that

0 =
d|I(λ)|
dλ

= i
d

dλ
⟨U(λ)φ̂2(0)|eiϕI(λ)φ̂2(λ)⟩

= ⟨−He−iHλφ̂2(0)|eiϕI(λ)φ̂2(λ)⟩ −
dϕI(λ)

dλ
⟨e−iHλφ̂2(0)|eiϕI(λ)φ̂2(λ)⟩

+i⟨e−iHλφ̂2(0)|eiϕI(λ)
dφ̂2(λ)

dλ
⟩.

(184)

For state describing functions of the form (133) with (136) and the classical-like Gaussian
descriptions (143), the contribution of the center-of-momentum does not vary with λ and the
λ dependence of the description of internals is in the classical dynamical variables u(λ),w(λ)
and the parameter L(λ)2 (156). From the chain rule, the last term in (184) is recognized as

⟨e−iHλφ̂2(0)|eiϕI(λ)
dφ̂2(λ)

dλ
⟩ =

∂|I(λ)|
∂u(λ)

· u̇(λ) + ∂|I(λ)|
∂u̇(λ)

· ü(λ) + ∂|I(λ)|
∂L(λ)2

dL(λ)2

dλ

= −i∂|I(λ)|
dL(λ)2

λc
4

from the vanishing of derivatives at λ = 0 developed in section 4.4.5 and with L(λ)2 from (156).
This contribution vanishes. The contributing terms to

∂|I(λ)|2

∂λ
= O(λ2)

in section 4.4.5 include all terms in the partial derivative with respect to L(λ)2 except the
contribution from the Hamiltonian. Inspection provides that

∂|I(λ)|2

∂L(λ)2
λc
4

=
∂|I(λ)|2

∂λ
= 0
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from the development in section 4.4.5 and the lack of imaginary contributions to ∂|I(λ)|2/∂λ
to O(λ2). Then

⟨e−iHλφ̂2(0)|eiϕI(λ)
dφ̂2(λ)

dλ
⟩ = 0

and (184) provides that

⟨Hφ2(0)|φ2(0)⟩ ≈ −
dϕI(λ)

dλ
⟨φ2(0)|φ2(0)⟩ (185)

at λ = 0, with removal of the common normalization factor ∥φ2(0)∥2, and from ϕI(0) = 0.
From the expression (155) for ϕI(λ),

−dϕI(λ)
dλ

= (2 + u̇(0)2 + 2ü(0) · u(0)) 1
λc
.

The expectation value (185) of the energy H equals the classical energy (155). The equality
applies for the state describing functions φ2(0) of the form (133) with (136) and (143) in the
nonrelativistic, brief interval, limited acceleration approximations.

The development now digresses to evaluates the expectation value of H for the state de-
scribing function φ2(0). Substitution of the two-argument state descriptions (137) and VEV
(140) into the scalar product ⟨Hφ2(0)|φ2(0)⟩ provides

⟨Hφ2(0)|φ2(0)⟩ ≈
(
1
4

)2 ∫
dp′

1 |f̃M (p′
1;λ)|2

∫
dp′

2dp
′
4 T4(p

′
2,p

′
4)

×H ei(p
′
2−p′

4)·u f̃I(p′
2 − 2w; 0) f̃I(p

′
4 − 2w; 0)

from (139) with the abbreviated notation (161) for the initial trajectory parameters. The
Hamiltonian (92) in the two-argument subspace is ω1 + ω2. Similarly to the development in
section 4.4.1, for nonrelativistic momenta λ2cp

′2
1 ≪ 1,

ω1 + ω2 ≈ 2ω(
1

2
p′
2) +

1

4
λcp

′2
1

in the Jacobi coordinates (134). A negligible center-of-mass contribution to the energy λc
4 p

′2
1

results if either the center-of-momentum description f̃M has a zero expectation or the dominant
momentum condition (103) applies. For λ2cp

′2
2 ≪ 1, the approximation (142),

2ω(
p′
2

2
) ≈ 2λ−1

c +
λc
4
p′2
2 ,

application of Q(F ) from (162) and the relation of powers of momenta with derivatives of Q(1)
(163) provides

⟨Hφ2(0)|φ2(0)⟩ ≈
(
2λ−1

c +
λc
4
∇2

b2

)
Q(1)
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in the notation (161) and with a Laplacian

∇2
b2

:=
∑
ν

∂2

∂b2
2ν

.

The value of physical interest is (164). Subtraction of the rest mass energy from both sides of
(185) produces

λ2c
4
∇2

b2
Q(1) = (u̇2 + 2ü · u) Q(1) (186)

for the trajectories u(λ) that exhibit a an energy correspondence.
Evaluation of ∇2

b2
Q(1) follows from the relationship of powers of momenta with derivatives

(163). From identification of free field and connected VEV contributions (169) to Q(1), and
their evaluations, (172) and (177) with rj from (174), Q(1) is a composite function over complex
b2,b4.

QF (1) =
ag
λ2c

(
π

2σ2R

) 3
2

e2w·(b2+b4)e
(b2+b4)

2

8σ2
R

QC(1) ≈
2π2c4ag
λc

(
π

2σ2R

) 1
2 e−8σ2

Rw2

4σ2R

(
1

r2
+

1

r4

)
e

(r2+r4)
2

8σ2
R

if Re(r2 + r4)≫ 8
√
σ2R.

To evaluate the gradient of Q(1), it is convenient to designate ν ∈ {x, y, z}, j ∈ {2, 4}, and

∂jνg(b2,b4) :=
∂g(b2,b4)

∂bjν
.

With A ∈ {F,C}, functions fnA((jν)n) are defined

n∏
k=1

∂jkνk
QA(1) := fnA((jν)n)QA(1)

with a recursive definition of the functions fnA derived from the product rule for derivatives.

f1A(jν) :=
∂jνQA(1)

QA(1)

fk+1,A((jν)k+1) := (∂jk+1νk+1
fkA((jν)k)) + f1A(jk+1νk+1)fkA((jν)k).

(187)

The evaluation of QF (1) in (172) provides

f1F (jν) = 2wν +
b2ν + b4ν

4σ2R

∂jνf1F (jν) =
1

4σ2R
.
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Then from the definition (187),

λ2c
4
∇2

b2
QF (1) =

λ2c
4

∑
ν

(
∂jνf1F (jν) + f1F (jν)

2
)
QF (1)

=

(
3λ2c
16σ2R

+ u̇2

)
QF (1).

After evaluation of Q(1) at (164), b2 = −b4. λcw = u̇ in the nonrelativistic approximation.
The evaluation of QC(1) in (177) provides

f1C(jν) =
r2 + r4
4σ2R

∂jνrj −
(∂jνrj)

rj

rj′

r2 + r4

∂jνf1C(jν) =
r2 + r4
4σ2R

∂2jνrj +
(∂jνrj)

2

4σ2R

−
(∂2jνrj)

rj

rj′

r2 + r4
+

(∂jνrj)
2

r2j

rj′

r2 + r4
+

(∂jνrj)
2

rj(r2 + r4)2
rj′ .

with introduction of the notation

j′ :=

{
2 if j = 4
4 if j = 2.

Derivatives of rj with respect to the components of bℓ follow from (174).

r2 =
(
(b2 + 4σ2w)2

) 1
2

and then

∂2νr2 =
b2ν + 4σ2wν

r2

∂22νr2 =
1

r2
− (b2ν+2σ2wν)

2

r32
.

Then from the definition (187),

∇2
b2
QC(1) =

(∑
ν

∂2νf1C(2ν) + f1C(2ν)
2

)
QC(1)

≈

(∑
ν

r2 + r4
4σ2R

∂22νr2 +
(∂2νr2)

2

4σ2R
+

(
r2 + r4
4σ2R

∂2νr2

)2
)
QC(1)

≈
(
r2 + r4
4σ2R

)2∑
ν

(∂2νr2)
2 QC(1)
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applying the large rj approximation to keep the most significant among the proliferation of
terms. From (174), ∑

ν

(∂2νr2)
2 =

(b2 + 4σ2w)2

r22
= 1.

Collecting results into the quantum-classical energy correspondence (186),

⟨Hφ2(0)|φ2(0)⟩ − 2λ−1
c Q(1) =

λ2c
4
∇2

b2
Q(1)

=

(
3λ2c
16σ2R

+ u̇2

)
QF (1) +

λ2c
4

(
r2 + r4
4σ2R

)2

QC(1)

= (u̇2 + 2ü · u) (QF (1) +QC(1)).

(188)

The contributions QF (1) and QC(1) to Q(1) are from (181). This quantum-classical corre-
spondence (188) relates the expected value of the energy of two elementary particles with an
interaction characterized by a single neutral scalar field with the classical energy of two bodies
governed by Newtonian mechanics.

(188) exhibits several properties in common with Schrödinger’s linear harmonic oscillator
example, [49] and section 4. The quantum dynamics determines a corresponding state de-
scription, σ2 in (101) for the linear harmonic oscillator and L(λ)2 in the constructed example.
There is a correspondence for any classical energy. The state describing functions that exhibit
a quantum-classical correspondence do not include energy eigenfunctions of the Hamiltonian
that corresponds with the classical dynamics. For the linear harmonic oscillator, observation
of the period and amplitude of oscillation for a known mass provide the spring constant k and
energy E. σ2 is determined to satisfy Schródinger’s equation for the classical-like Gaussian
wave functions. For the constructed realization of relativistic quantum physics, observation of
a known mass imply the coupling constant g and the energy. Re(L(0)2) is determined by the
quantum-classical correspondence (118) for classical-like Gaussian state describing functions
(143) analogously to (101) from Schrödinger’s study of the linear harmonic oscillator. The
potential strength g follows from observation of the corresponding classical trajectories, and
L(0)2 is determined from g and the quantum dynamics that includes the coupling constant
c4. c4 = 0 implies that g = 0 (QC(1) = 0). That only particular σ2 or Re(L(0)2) exhibit a
quantum-classical correspondence but for any energy is a puzzlement. Another puzzlement is
how Schrödinger’s equation for nonrelativistic quantum physics derives within quantum me-
chanics from the realizations of relativistic quantum physics: at the fidelity of the approxima-
tions, Schrödinger’s equation has the same dynamics as the constructed realization of relativistic
quantum physics when nonrelativistic quantum-classical correspondences are exhibited.

The final study within this section verifies that the 2ü · u term in the classical energy is
a −g/r pair potential. If the trajectories u(λ) satisfy Newton’s equation of motion, then the
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2ü(0) · u(0) term in the ϕI(λ) from (159) is a −g/r pair potential. u(λ) is half the two body
separation and Newton’s equation for the trajectory u(λ) is then

mc2ü(λ) = −∂V (2∥u(λ)∥)
∂(2u(λ))

from (237) in appendix 6.12 and in the units of this note. Identification of the 2ü(λ) ·u(λ) term
as a potential energy and Newton’s equation of motion result in

V (2∥u(λ)∥)
mc2

= 2ü(λ) · u(λ)

= − 1

mc2
∂V (2∥u(λ)∥)

∂u(λ)
· u(λ).

(189)

The corresponding potential satisfies

V (2∥u(λ)∥) = −∂V (2∥u(λ)∥)
∂u(λ)

· u(λ).

The solution is a −g/r pair potential,

V (2∥u(λ)∥ = −mc2 g

∥2u(λ)∥
.

The characteristic length g determines the strength of the potential. The chain rule provides
that

−
(
∇u

1

∥u∥

)
· u = −

(
∂∥u∥−1

∂∥u∥

)(
∂∥u∥
∂ux

ux +
∂∥u∥
∂uy

uy +
∂∥u∥
∂uz

uz

)
=

1

∥u∥2

(
u2
x

∥u∥
+

u2
y

∥u∥
+

u2
z

∥u∥

)

=
1

∥u∥
.

While approximation of the likelihood results in no insight into the corresponding (118)
classical trajectory, the derivatives of I(λ) and ϕI(λ) from (155) result in an energy correspon-
dence that identifies the corresponding trajectories u(λ) as solutions of Newton’s equation for
a −g/r pair potential.

4.5 Extended interval propagation

In this section, satisfaction of the quantum-classical correspondence (118) over brief intervals
is extended to longer intervals.
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The quantum-classical correspondence (118)

U(ℓλ)φ̂n(λo; 0) ≈ eiϕI(ℓλ)φ̂n(λo; ℓλ)

is expressed as a sequence of brief interval approximations,

U(λ)ℓφ̂n(λo; 0) ≈
(
eiϕI(λ)

)ℓ
φ̂n(λo; ℓλ)

using the group property of time translation and additivity of the phase ϕI(λ). Here, refering
to section 4.3, the notation is augmented to explicitly display the time argument λo of the
state describing function as well as the temporal parameter for the corresponding classical
trajectories.

U(λ)ℓφ̂n(λo; 0) = φ̂n(λo − ℓλ; 0)

from (32). The error in the quantum-classical correspondence (118) for an interval ℓλ follows
from the approximation errors for each subinterval within ℓλ. The error at step ℓ is described
by state describing functions ϵℓ.

U(λ)φ̂n(λo − ℓλ; ℓλ) := eiϕI(λ)φ̂n(λo − ℓλ; (ℓ+ 1)λ) + ϵℓ+1. (190)

The error after accumulation of the ℓ steps of duration λ is described by ϵ.

U(λ)ℓφ̂n(λo; 0) :=
(
eiϕI(λ)

)ℓ
φ̂n(λo;nλ) + ϵ.

From successive substitution of (190) it follows that

U(λ)ℓφ̂n(λo; 0) = U(λ)ℓ−1
(
eiϕI(λ)φ̂n(λo;λ) + ϵ1

)
= eiϕI(λ)U(λ)ℓ−1φ̂n(λo;λ) + U(λ)ℓ−1ϵ1

= eiϕI(λ)U(λ)ℓ−2φ̂n(λo − λ;λ) + U(λ)ℓ−1ϵ1

= eiϕI(λ)U(λ)ℓ−3
(
eiϕI(λ)φ̂n(λo − λ; 2λ) + ϵ2

)
+ U(λ)ℓ−1ϵ1

=
(
eiϕI(λ)

)2
U(λ)ℓ−4φ̂n(λo − 2λ; 2λ) + eiϕI(λ)U(λ)ℓ−3ϵ2 + U(λ)ℓ−1ϵ1

=
.. .

=
(
eiϕI(λ)

)ℓ
U(λ)−ℓφ̂n(λo − ℓλ; ℓλ) +

ℓ∑
j=1

(
eiϕI(λ)

)j−1
U(λ)ℓ+1−2jϵj

=
(
eiϕI(λ)

)ℓ
φ̂n(λo; ℓλ) +

ℓ∑
j=1

(
eiϕI(λ)

)j−1
U(λ)ℓ+1−2jϵj .
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Then, the error ϵ after ℓ steps is

ϵ =
ℓ∑

j=1

(
eiϕI(λ)

)j−1
U(λ)ℓ+1−2jϵj

from the errors ϵj for each subinterval. From the triangle inequality, and unitarity of U(λ) and
eiϕI(λ),

∥ϵ∥ ≤
ℓ∑

j=1

∥ϵj∥.

The accumulated error grows no faster than the number of subintervals. If the errors ∥ϵj∥
decline faster than the duration of the subintervals, then the limit of an ever briefer short
interval analysis converges and demonstrates a correspondence over an extended interval. For
instance, if the brief intervals errors were all O(λ2), then the error over a fixed interval would
converge as 1/ℓ. However, the large rj approximation does not improve with the duration of
the subinterval, and the nonrelativistic Hamiltonian and limited acceleration approximations
improve no better that linearly with the number of subintervals. Extension of the interval
applies only as long C.1-3 remain valid.

Brief interval propagation is also of interest for recurring observations. Recurring observa-
tions, for example, massive bodies awash in photons, are common. Then, an observed trajectory
results from the accumulation of brief interval likelihoods in a random walk composed of the
likely trajectories.

5 Technical concerns with canonical quantization

Inquiry into an appropriate mathematical development of quantum mechanics was initiated
notably by John von Neumann. This inquiry has been extended by Léon van Hove, Res Jost,
Rudolf Haag, Arthur Wightman, Huzihiro Araki, Nikolay Bogolubov, Hans-Jürgen Borchers,
Raphael Høegh-Krohn, Franco Strocchi and many others [9, 67]. Their developments use the
concept of Hilbert space advanced notably by David Hilbert, Erhard Schmidt, Frigyes Riesz,
Marshall Stone and John von Neumann. The discussion here distinguishes a general develop-
ment of quantum mechanics from a canonical formalism development. The general develop-
ment includes: quantum mechanics describes the states of nature as elements of rigged Hilbert
spaces; the evolution of the observable features of appropriate states is well approximated by
classical mechanics; energies are nonnegative; the temporal evolution of state descriptions is
unitary (likelihood preserving) and causal; likelihoods of observation are calculated from Born’s
rule; and likelihoods, like events, are relativistically invariant. The canonical formalism adds
the conjecture that the quantum-classical correspondence is established be associating classical
dynamical variables with densely defined Hermitian operators [13, 57, 60]. Concerns with the
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canonical formalism are introduced in section 2. This section extends the discussion of technical
concerns with the canonical formalism for quantum mechanics.

Quantum mechanics has provided an expanded and successful description of nature. Nev-
ertheless, and emphasized by von Neumann, issues remain even in the development of nonrel-
ativistic quantum mechanics [60]. The canonical formalism [13, 57, 61] “quantizes” classical
dynamics. If classical dynamical variables quantize to Hermitian Hilbert space operators and
there is a “quantization” of the corresponding classical dynamics, is it a concern that while
functions of classical dynamical variables are classical dynamical variables (for example, gener-
alized coordinates), products of Hermitian operators are not necessarily Hermitian operators?
Are some classical quantities distinguished by having quantizations while other quantities do
not? Or is it a concern that the (generalized) eigenfunctions of operators associated with ob-
servables by the canonical formalism are not always elements of the Hilbert space, that is, do
not describe states in nature? In such cases, what state results from a “collapse to an eigenstate
of the observable?” The Schrödinger representation of location Xν and momentum Pν oper-
ators satisfy the Born-Heisenberg-Jordan relation [Xν , Pµ] = −iℏδν,µ and serve as archetypes
for a quantization of classical dynamical variables. These Xν and Pν apply in the L2 Hilbert
spaces suitable for nonrelativistic quantum mechanics. In the following few paragraphs, the
discussion includes that: the eigenfunctions of the operators Xν and Pν are not elements of
L2 Hilbert spaces; locations and momenta associated with state describing functions are well
defined as observable features even when expectations of the corresponding operators Xν and
Pν diverge; the quantization of location Xν fails to be a Hermitian operator even in relativistic
free field theory; and the quantization of products of locations x and momenta p are not neces-
sarily Hermitian operators even in nonrelativistic quantum mechanics. Each of these points is
a difficulty or ambiguity for canonical quantization. Together contradictions motivate a revised
quantum-classical correspondence.

First, greater detail on Hilbert space operators is introduced. Discussion is limited to the
complex Hilbert spaces of interest. Study of Hilbert space operators, particularly unbounded
operators in infinite dimensional Hilbert spaces, is a subtle and elegant subject [40] that illus-
trates many of the “paradoxes of infinity.” In appendix 6.2.5, a Hilbert space operator A is
introduced as a mapping of elements from a Hilbert space H back into H, A : H 7→ H. If

|Aψ⟩ = |g⟩

then |ψ⟩ ∈ DA ⊆ H, the domain of A, and |g⟩ ∈ RA ⊆ H, the range of A. The domains of
bounded operators can be extended to the entire H. A is bounded if ∥Aψ∥ ≤ c∥ψ∥ for some
c ∈ R independently of the element |ψ⟩. The least upper bound c defines an operator norm
∥A∥. The domain of an unbounded A is necessarily a proper subset of the Hilbert space but
the domain may be dense in H. A set of elements |en⟩ is dense in H if every |ψ⟩ ∈ H is within
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an arbitrarily small neighborhood of a finite linear combination of the |en⟩,

∥ψ −
N∑
n=1

cnen∥ < ϵ

for N > Nϵ with the cn ∈ C and ϵ→ 0 as N grows. A separable Hilbert space has a denumerable
(finite or infinite) dense set of elements |en⟩. An example is that functions in the Schwartz
function space S [20] are dense in the square-summable functions in L2. L2 has a dense,
denumerable basis. For an unbounded operator B, a subsequence from a diverging sequence
|Bun⟩ can be selected and relabeled such that ∥Bun|| > n∥un∥. Then, the neighborhood of
each element |ψ⟩ with |Bψ⟩ ∈ H contains a sequence constructed below with ∥B (ψ − ψn)∥ >
n ∥ψ − ψn∥ for n growing without bound and ∥ψ − ψn∥ → 0. That is, an unbounded operator
is not continuous anywhere in the Hilbert space. Indeed, using the divergent sequence |un⟩
selected above, set

|vn⟩ :=
|un⟩
n∥un∥

, and then ∥Bvn∥ =
∥Bun∥
n∥un∥

> 1.

The sequence |ψn⟩ := |ψ⟩ + |vn⟩ is a convergent sequence, ∥ψ − ψn∥ = ∥vn∥ = 1/n → 0, but
∥B (ψ − ψn)∥ = ∥Bvn∥ > 1. Then generally, neighboring states within a Hilbert space do
not have nearly the same observables when observables are associated with unbounded Hilbert
space operators.

In contrast, states exhibit observable features even when the expectation values of corre-
sponding operators diverge or when the operation is undefined. For the example of location,

ψ(x) = e−x2/(4σ2) +
ϵ

(1 + x2)1−δ

is dominantly supported near x = 0 for 0 < ϵ, δ ≪ 1 with the length σ determining the size of the
neighborhood. The σ, ϵ, δ can be selected to provide an arbitrarily large likelihood that an ob-
servation of location is near x = 0. For the dominant support, the likelihood that the perceived
location will be within a finite volume of dominant support is much greater that the likelihood
the perceived location will be from any other disjoint, equal volume. In this interpretation, the
likely location is near x = 0 for the state described by ψ(x) even though ⟨ψ|xψ⟩ diverges. For
location, xν 7→ Xν is the Hilbert space location operator, and the expectation value ⟨ψ|Xνψ⟩
diverges even though the likely perception of the body described by ψ(x) is that the body will
be observed near the origin. The likelihod contrast is made for obervations over finite volumes.
At large x2 (the unobservable “far side of the moon”), there is a small likelihood of detection
within any finite volume but a sufficient volume for the mean value to diverge. There is no
actual divergence since we are not capable of detecting location over infinite volumes. Our
measurements are always localized; location Xν and momentum Pν are idealized observables.
Actual observations are limited to finite, localized volumes: without an omniscient classical
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observer, no knowledge of infinite volumes is available. The likelihoods of physical interest
are relative likelihoods of detection comparing finite volumes. Unknowable, distant support of
functions only hypothetically affects our considerations. In the example, ∥ψ(x)− e−x2/(4σ2)∥ is
small, they are neighboring states, but ∥Xνψ(x)−Xνe

−x2/(4σ2)∥ is divergent in the L2 norm.
Correspondence with the classical concepts of location and momentum is provided by the

support of the functions that describe states. Considering support, the likelihoods of obser-
vations of location and momenta are nearly the same if the support of the state describing
functions are nearly the same. The support of state describing functions are more robust and
consistent observable features than expected values of unbounded, densely defined Hermitian
Hilbert space operators like Xν and Pν .

The observables, location, momentum and field strength, are anticipated to have eigenvalues
for every real number. As a consequence, their eigenfunctions cannot be elements of HP . At
best, their eigenfunctions are generalized eigenfunctions, [21] and appendix 6.2.1. Eigenfunc-
tions with distinct eigenvalues of a Hermitian operator are orthogonal [46] and there can only
be a countable number of mutually orthogonal functions within the separable Hilbert spaces of
interest [10]. Observation of location, momentum and field strength can not be “collapse” to an
eigenfunction of the observable: generalized eigenfunctions are not admissible state describing
functions.

Introduced in section 2, extrapolation of the quantized location operator Xν to relativistic
physics does not succeed. With consideration of relativity, the Xν that results from quanti-
zation of the classical dynamical variables xν are not Hermitian operators. As illustrated in
appendix 6.2.6, operators whose eigenvalues are observable quantities must be Hermitian. Tran-
sition likelihoods are determined by the scalar product and these likelihoods describe events
independently of inertial observer. As a consequence, the scalar product must be a Lorentz
invariant in relativistic physics. The scalar product (21), and the Källén-Lehmann form for the
two-point function as a nonnegative summation over masses of the Pauli-Jordan function result
in consideration of

⟨X∗
νψ|g⟩ = ⟨ψ|Xνg⟩

=

∫
dxdy ∆+(y − x)ψ(y)xνg(x)

̸= ⟨Xνψ|g⟩

=

∫
dxdy ∆+(y − x) yνψ(y) g(x)

since the Pauli-Jordan function is not of point support in spacetime, xν∆
+(y−x) ̸= yν∆

+(y−x).
Then X∗

ν ̸= Xν for ψ, g ∈ DXν . The elevation of xν to Hilbert space operator Xν is not Hermi-
tian in relativistic quantum mechanics. This “localization problem” is one of many problems
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that develop with the canonical formalism. In contrast, the energy-momentum operators,

n∑
ν=1

Pν

in the n-argument subspace, are generators of translations in a unitary realization of the trans-
lation group and are self-adjoint as a consequence of Stone’s theorem [24, 40]. In the argument
above, ⟨ψ|Pνg⟩ = ⟨Pνψ|g⟩ follows from the point support of the Källén-Lehmann form in the
momentum domain,

pνδ(p− q) = δ(p− q)qµ.

A unitary realization of the translation group results from translation invariance of the scalar
product. Location, an observable of evident importance in physics, does not correspond pre-
cisely to the elevation of xν in relativistic quantum mechanics. Discussed in section 2 and
appendix 6.4, the Hermitian operator associated with location is not the quantization of xν .
Suitable location operators are determined by the relativistically invariant localized functions
that describe those states that most closely correspond to a body at a particular location in
relativistic quantum physics. These forms [43] are discussed in appendix 6.3.

Quantizations of classical dynamical variables can be excluded as Hermitian operators even
in ordinary (nonrelativistic) quantum mechanics. The product x3p can be considered a classical
dynamical quantity and in ordinary quantum mechanics with a single spatial dimension, the
corresponding operator in L2 should be the formally Hermitian

iℏx3/2
d

dx
x3/2 = iℏ(

x3

2

d

dx
+

d

dx

x3

2
)

since the classical dynamic variables x and p correspond to unbounded, self-adjoint operators x
and iℏd/dx in this one spatial dimensional L2 example. However, this densely defined, formally
Hermitian operator that corresponds with x3p has square-summable eigenfunctions

sλ(x) :=
√
2λ

exp (−λ/(2x2))
x3/2

with imaginary eigenvalues −iℏλ [9]. 0 < λ ∈ R. As a consequence, X3/2PX3/2 is not a
densely defined Hermitian operator in the L2 Hilbert space. This sλ(x) ∈ L2 is defined for
x > 0 and equals zero otherwise, or sλ(x) can be extended to negative x. The formally
Hermitian operator X3/2PX3/2 that corresponds to x3p is not Hermitian for L2 although x3p
is well defined in classical dynamics. Nevertheless, for the example of linear harmonic motion
and minimum uncertainty support states st(x) with small spatial variances, the trajectory of
x3p given by Newtonian mechanics approximates ⟨st|X3/2PX3/2st⟩ from quantum dynamics
[34, 49]. This establishes that there are particular states with real ⟨st|X3/2PX3/2st⟩ that agree
with the classical approximations x3p even though X3/2PX3/2 is not a Hermitian operator.
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The Hermitian operator corresponding to x3p need not be the elevation of x3p. Once again,
the support of functions for appropriate state describing functions exhibit quantum-classical
correspondence while a correspondence of classical dynamical variable with an operator fails.
Even when the operator that is the quantization of the classical dynamical variable is not
Hermitian, the classical dynamics can approximate the quantum mechanics for appropriate
states.

6 Appendices

6.1 The Dirac-von Neumann axioms for quantum mechanics

The Dirac-von Neumann axioms describe nonrelativistic quantum mechanics. Here, the state-
ment of the Dirac-von Neumann axioms is adapted from F. Strocchi’s discussion [57].

I. Observables: The Hermitian operators A corresponding to the observables of a quantum
mechanical system are within the algebra of bounded self-adjoint operators B(H) for a
separable Hilbert space H.

II. States: The pure states of a quantum mechanical system are described by rays a|s⟩,
|s⟩ ∈ H, a ∈ C and a ̸= 0. More generally, a state is described by a nonnegative, unit
trace, state density operator ρ ∈ B(H).

III. Expectations: If a state is represented by the normalized pure state |s⟩ ∈ H, then, for
the observable corresponding to A ∈ B(H), the experimental expectation is ⟨s|As⟩. More
generally, experimental expectations are Trace(Aρ). If A has a complete set of normalized
eigenvectors |en⟩ ∈ H, then

⟨s|As⟩ =
∑
n

λn|⟨en|s⟩|2

and from Born’s rule, the likelihood of observing λn is |⟨en|s⟩|2. More generally, A is
described by the spectral theory for rigged Hilbert space operators (theorem 1, appendix
to section 4 [21], lemma 5.6.7 [40], chapters 7-10 [24]).

Axioms I-III describe a Hilbert space realization of quantum mechanics and are implicit in the
development of section 3. Conditions A.1 and A.2 of section 3.2 imply a Hilbert space realiza-
tion. State density operators ρ ∈ B(H) are discussed in section 6.2.6. States are described by
elements of the Hilbert space: limits of states such as the eigenstates of location and momentum
are in the dual to the basis function spaces but depart from the rigged Hilbert spaces of interest
[9]. Superselection sectors in the Hilbert spaces of interest illustrate that not all Hilbert space
elements represent states of nature. Hilbert spaces of interest are represented as direct sums of
superselection sectors and the observables are associated with operators limited to within sec-
tors. The limitation of observables to bounded operators departs from Dirac’s development but
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reflects that only finite values are observable, for example, locations within an accessible, finite
volume. Limiting consideration to bounded operators provides several technical conveniences
[24, 57] as well as conceding to physical reality.

Axioms I-III describe a general Hilbert space realization of quantum mechanics. Character-
ization of the observables remains. Dirac-von Neumann axioms IV-V determine properties of
particular operators.

IV. Dirac canonical quantization: The Hermitian operators that describe canonical coordi-
nates qi and momenta pj , i, j = 1, . . . N , obey canonical commutation relations

[qi, qj ] = 0

[pi, pj ] = 0

[qi, pj ] = −iℏδij .

V. Schrödinger representation: The canonical commutation relations are realized in the
Hilbert space

H := L2 = {ψ(x)|
∫
dx |ψ(ct,x)|2 <∞, x ∈ R4,x = x1, x2, x3}

by:

|qiψ⟩ := xi |ψ⟩

|piψ⟩ := −iℏ | ∂ψ
∂xi
⟩.

In the Dirac-von Neumann axioms, canonical variables qi, pi are quantizations of classical dy-
namical variables. If the canonical variables qi, pi are location and momentum, respectively, the
canonical commutation relations are known as the Born-Heisenberg-Jordan relations. In the
L2 Hilbert space applicable to nonrelativistic physics, these quantizations result in unbounded
Hermitian Hilbert space operators qi, pi, violating I. The correspondence in axiom V is the
“elevation of c-number to q-number” for qi. Unboundedness introduces the consideration that
sums of observables are not necessarily observables (if necessarily limited domains are suffi-
ciently disjoint) [24]. And, the (generalized) eigenstates of location and momentum are not
elements of the Hilbert space. These and additional difficulties with the canonical formalism
are discussed in section 5. Axiom V describes a particular, nonrelativistic quantum-classical
correspondence for location and momentum. The canonical formalism extrapolates axioms IV-
V with fields as canonical coordinates [61]. Axiom IV remains valid for location and momentum
in the constructions.
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The lack of a clear distinction between the role of the two sets of axioms, I, II, III and
IV,V, is at the origin of the widespread point of view, adopted by many textbooks, by
which all of them are characteristic of quantum systems. The distinction between
classical and quantum systems is rather given by the mathematical structure of
[the algebra of observables] and it will have different realizations depending on the
particular class of systems. – Franco Strocchi [57].

6.2 Hilbert spaces and quantum mechanics

6.2.1 Hilbert spaces

A Hilbert space H is characterized by the number of linearly independent elements. For every
two elements in the complex Hilbert spaces of interest here, there is a complex number ⟨f |g⟩,

f, g ∈ H 7→ ⟨f |g⟩ ∈ C

designated the scalar product of the elements. Properties of this scalar product include that
⟨g|f⟩ is the complex conjugate of ⟨f |g⟩ and the scalar product is linear in the second argument,
⟨f |αg+ βh⟩ = α⟨f |g⟩+ β⟨f |h⟩ for α, β ∈ C, and as a consequence, complex conjugate linear in
the first argument. Scalar products are nonnegative, ⟨f |f⟩ ≥ 0, and this provides satisfaction
of the Cauchy-Schwarz-Bunyakovsky inequality,

|⟨g|f⟩|2 ≤ ⟨g|g⟩⟨f |f⟩.

In particular, if ⟨f |f⟩ = 0, then ⟨g|f⟩ = 0 for every element |g⟩ of the Hilbert space. The
zero element is unique in a Hilbert space. A degenerate scalar product has all the properties
of a scalar product except for uniqueness of the zero element. A degenerate scalar product
(21) is defined for pairs of function sequences from the basis spaces P considered as a linear
vector space. The Hilbert spaces of interest are the completions of linear vector spaces with
elements that are equivalence classes of vectors labeled by function sequences [12]. The elements
of the Hilbert space may be characterized by any function sequence in an equivalence class.
An isometry extends the degenerate scalar product to a scalar product: the elements of the
Hilbert space are equivalence classes of functions equal in the norm (20) and ⟨f |f⟩ = 0 states
that the function sequence f is an element of the equivalence class of zero. The separation
of two Hilbert space elements g, f is ∥g − f∥ using the norm (20). The distance is zero for
two equivalent function sequences, and two is the maximum separation of normalized state
descriptions (∥f∥ = ∥g∥ = 1). The separation is

√
2 for orthogonal, normalized states. Two

states f, g are orthogonal if ⟨g|f⟩ = 0. In quantum mechanics, every element on a ray |af⟩ with
finite a ∈ C describes the same physical state: only relative phase and amplitude within linear
combinations are significant. Linearity and completeness are characteristic of Hilbert spaces.
A Hilbert space H is complete: the limit of every Cauchy sequence of elements |g

ν
⟩ ∈ H is

included. That is, if
∥g
ν
− g

n
∥ → 0
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for ν, n > N → ∞, there is an element |g⟩ ∈ H such that |g⟩ = limν→∞ |gν⟩. In a separable
Hilbert space, every element is arbitrarily well approximated by a denumerably indexed sum of
N linearly independent elements.

|f⟩ =
∑
ℓ

cℓ|eℓ⟩

with ℓ ∈ N, the natural numbers, and cℓ ∈ C. A (closed) subspace of a Hilbert space is the
linear span of a subset of elements. If there are only N linearly independent elements, the
Hilbert space or subspace is finite dimensional of dimension N , and if the number of linearly
independent elements is unbounded but includes a denumerable, dense set of elements, the
Hilbert space or subspace is denoted infinite dimensional and separable. The rigged Hilbert
spaces of interest here are separable [10].

6.2.2 Rigged Hilbert spaces

Rigged (equipped) Hilbert spaces are appropriate settings for quantum mechanics. VEV that
provide a Poincaré invariant scalar product (21) must be generalized functions: the VEV can
not be summable functions [9]. The basis function spaces P used in the constructions include
only those elements from S with Fourier transforms that vanish on the negative energy mass
shells. Three classes of functions, denoted a Gelfand triple after Israel Gelfand, describe a
rigged Hilbert space. The elements of a countably normed basis function space are denoted test
functions [9, 19, 20]. A particularly useful space of test functions are the Schwartz tempered
functions S: the tempered functions are smooth (infinitely differentiable) and exhibit rapid
decline for large values of their arguments [20]. The space of Fourier transforms of S coincides
with S. The associated class of generalized functions S ′ are the linear distributions (generalized
functions) dual to S. Linear distributions T (x) map functions to complex numbers.

T (x) ∈ S ′ : ψ(x) ∈ S 7→ T (ψ) ∈ C.

S ′ is usefully conceived as limits of functions T (x) such that

T (ψ) =

∫
dx T (x)ψ(x)

is finite when ψ(x) ∈ S with acknowledgment that this concept includes limits that are not
summable using Lebesgue measure.n Indeed, the generalized functions dual to the functions of
bounded support can be represented

T (ψ) =
∑
n

∫
dµk(x)

dnψ(x)

dxn

nA perspective on the distinction between functions and generalized functions is illustrated by generalized
functions with a single point of support. Both δ(x) and δ′(x) are limits of test functions and supported solely
on the point x = 0 but δ(f) = f(0) and δ′(f) = f ′(0).
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with the summation over a finite number of terms using measures µk on the real numbers [20].
HS consists of S plus the Cauchy sequences convergent in a Hilbert space norm (20). As a
consequence, the Gelfand triple (S,HS ,S ′) satisfies

S ⊂ HS ⊂ S ′.

The eigenfunctions of location and momentum are not elements of HS but are elements of S ′.
Generalized eigenfunctions of a linear operator A defined in S are the generalized functions
Tλ(x) ∈ S ′ such that Tλ(Af) = λTλ(f) for any f ∈ S.

The function spaces P ⊂ S are a union of nuclear, countably normed spaces [21]. The
elements of P ⊂ S are test functions and their limits within HP constructed from the VEV in
section 3 include generalized functions.

6.2.3 The Cauchy-Schwarz-Bunyakovsky inequality

The Cauchy-Schwarz-Bunyakovsky [46] inequality is that

|⟨u|v⟩|2 ≤ ⟨u|u⟩⟨v|v⟩

for elements u, v within a complex linear vector space H. The Cauchy-Schwarz-Bunyakovsky
inequality applies if the vector space has a product ⟨u|v⟩ : u, v ∈ H 7→ ⟨u|v⟩ ∈ C with properties

⟨v|v⟩ ≥ 0

⟨u|v⟩ = ⟨v|u⟩

⟨w|αu+ βv⟩ = α⟨w|u⟩+ β⟨w|v⟩

(191)

for all u, v, w in the vector space H and α, β ∈ C. This product is designated a complex scalar
product if ⟨v|v⟩ = 0 implies v = 0, and otherwise it is a degenerate scalar product.

For any two elements in the vector space, choose one element to label as v if ⟨v|v⟩ > 0 and
label the remaining element u. This includes all cases except for both ⟨v|v⟩ = 0 and ⟨u|u⟩ = 0.
Using the Gram-Schmidt construction, the element

z = u− ⟨u|v⟩
⟨v|v⟩

v

is orthogonal to v.
⟨z|v⟩ = 0.

From the properties (191) and the construction of z,

⟨u|u⟩ = ⟨z + ⟨u|v⟩
⟨v|v⟩

v|z + ⟨u|v⟩
⟨v|v⟩

v⟩

= ⟨z|z⟩+ |⟨u|v⟩|
2

⟨v|v⟩
≥ 0.
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But ⟨z|z⟩ ≥ 0 and it follows that

⟨u|u⟩ ≥ |⟨u|v⟩|
2

⟨v|v⟩
.

This demonstrates the inequality unless both ⟨v|v⟩ = 0 and ⟨u|u⟩ = 0. If both are zero, the
properties (191) provide that

⟨u+ v|u+ v⟩ = ⟨u|u⟩+ ⟨u|v⟩+ ⟨v|u⟩+ ⟨u|u⟩

= 2Re(⟨u|v⟩)

≥ 0.

Similarly, ⟨u− v|u− v⟩ ≥ 0 provides that

2Re(⟨u|v⟩) ≤ 0.

As a consequence, Re(⟨u|v⟩) = 0. Similarly, ⟨u+ iv|u+ iv⟩ ≥ 0 and ⟨u− iv|u− iv⟩ ≥ 0 provide
that Im(⟨u|v⟩) = 0. Then,

⟨u|v⟩ = 0

if both ⟨v|v⟩ = 0 and ⟨u|u⟩ = 0. Summarizing, the Cauchy-Schwarz-Bunyakovsky inequality
applies to a linear vector space with elements u, v and product ⟨u|v⟩ with properties (191).

If ⟨u|v⟩ is a scalar product and neither u nor v are the zero element, then

|⟨u|v⟩|2 = ⟨u|u⟩⟨v|v⟩

if and only if
u = αv

for a nonzero α ∈ C. For nonzero u and v and a scalar product, the equality applies if and only
if z = 0 for the z constructed above and then

u =
⟨u|v⟩
⟨v|v⟩

v.

6.2.4 Entanglement

Quantum mechanics includes descriptions of entangled states. Descriptions of states are ele-
ments of Hilbert spaces and elements are expressible as linear combinations of other elements.
The linear expansion of states is a property of quantum physics distinct from classical physics.

A simple example of entanglement has four states: |up, up⟩, |up, down⟩, |down, up⟩, and
|down, down⟩ that span the spin states of two spin one-half bodies. The states describe the
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four possibilities for the measurement of spin polarizations along a particular axis. Any linear
combination of these four states describes a state. For example,

1√
2
|up, down⟩+ 1√

2
|down, up⟩

is one possible state. For this example state, the polarizations are entangled: up for the first
body occurs only with down for the second body, and down for the first body occurs only with
up for the second body. The state of the first body is determined by the state for the second
and total spin adds to zero in any observation. However, the states are not determined, the
first body can be detected as either spin up or spin down with equal likelihoods in this example.
But, knowledge of one of the spins implies knowledge of the other due to an entanglement of
states. Entanglement of the spins is established when the particles are causally related; the
entanglement persists as the particles become acausally separated. An entanglement of bodies
need not be perfect. For example,

a |up, up, down⟩+ b |up, down, up⟩+ c |down, up, up⟩

is an example with a particular angular momentum but no perfectly entangled pair. In appendix
6.2.7, the states that result from an observation are described by linear combinations of states
of an observer entangled with the possible results of observation, |ψ⟩ =

∑
k ck |ok, sk⟩. The ok

are orthogonal descriptions of the observer’s state, and the sk describe the entangled, observed
state. In the example of Schrödinger’s cat thought experiment [51], o1 would be “observed a
live cat,” o2 would be “observed a dead cat,” s1 would be “a live cat,” s2 would be “a dead cat”
and these descriptions are entangled c1|o1, s1⟩ + c2|o2, s2⟩. An appeal to experience indicates
that |o1, s2⟩ and |o2, s1⟩ do not persist in the evolution of states.

6.2.5 Hilbert space operators

Hilbert space operators are linear maps of elements of a Hilbert space H to elements within
the Hilbert space [3, 40]. A is a Hilbert space operator if

A : |f⟩ ∈ H 7→ |Af⟩ ∈ H

for a subset of elements |f⟩ ∈ DA ⊆ H denoted the domain of A. For a bounded operator,

∥Aψ∥ ≤ ∥A∥ ∥ψ∥

with
∥A∥ := sup(∥Aψ∥ : ∥ψ∥ ≤ 1) <∞.

A bounded operator is continuous, and the domain can be extended to the entire Hilbert
space. Unitary operators are bounded and preserve the scalar product, that is, for unitary U ,
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⟨Ug|Uψ⟩ = ⟨g|ψ⟩. Illustrated in section 5, an unbounded operator is not continuous, its domain
is not a (closed) subspace, and the domain necessarily does not include the entire Hilbert space
although the domain may be dense in the Hilbert space. The adjoint operator A∗ of a Hilbert
space operator A is defined by the property that ⟨A∗h|ψ⟩ := ⟨h|Aψ⟩ for |ψ⟩ ∈ DA and |h⟩ ∈ DA∗ .
The set of h ∈ H such that there is a g ∈ H with ⟨h|Aψ⟩ = ⟨g|ψ⟩ is the domain DA∗ of A∗.
An operator A with domain DA is Hermitian if ⟨u|Av⟩ = ⟨Au|v⟩ for every u, v ∈ DA [3], a
Hermitian operator is symmetric if DA is dense in the Hilbert space, and a symmetric operator
is self-adjoint if DA = DA∗ and Au = A∗u for every u ∈ DA. These designations correspond to
Hermitian, maximal Hermitian, and hypermaximal respectively in von Neumann’s designation
[60].

6.2.6 Operators in quantum mechanics

Every closed subspace of states corresponds with a projection operator [40]. Fundamental re-
sults for Hilber psace operators include the spectral theory for rigged Hilbert space operators
[21, 24, 40]; and Stone’s theorem [24] for unitarily realized groups of Hilbert space transfor-
mations. Spectral theory displays the Hermitian operators that represent observables as limits
of linear combinations of projections weighted by representative values of the observable as-
sociated with each subspace of states. Projection operators E are bounded, self-adjoint and
idempotent, E = E∗ = E2, ∥Eψ∥ ≤ ∥ψ∥. For projections, the range RE = EH ⊂ H, a proper
subset unless E = I. From a projection E, any state |ψ⟩ ∈ H may be decomposed as an element
|Eψ⟩ within the subspace EH and an element |(I−E)ψ⟩ in the orthogonal complement of the
subspace, Riesz’s theorem.

The states of nature are described by nonnegative (⟨ψ|ρψ⟩ ≥ 0), self-adjoint (ρ = ρ∗,
Dρ = Dρ∗ dense in H), trace-class, normalized operators ρ (Trace[ρ] = 1).

Trace[ρ] :=
∑
k

⟨ek|ρek⟩ (192)

if the |ek⟩ are an orthonormal basis for the separable Hilbert space H. This basis is not unique
and every unitary operator maps a basis to a basis, |Uek⟩ = |e′

k⟩. U∗ = U−1 for a unitary
operator and unitary operators are bounded. These operators ρ are designated state density
operators [60] and generalize the vector states generally discussed above. Vector states have state
density operators ρ = E for E the projection onto a single element |ψ⟩ (RE = {|aψ⟩ : a ∈ C}).
Born’s rule includes: if a state is described by the state density operator ρ, then the likelihood
of observing a state in the subspace EH corresponding to a projection E given an initial state
described by ρ is Trace[Eρ] ≤ 1.

Operators associated with observables have mean values

E[A] := Trace[Aρ] ∈ R
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for Hermitian operators A and state density operators ρ. Measurements are real numbers and
the expectation values of Hermitian operators are real. If A is Hermitian, A = A∗ on the
domain of A, then for every f ∈ DA,

⟨A∗f |f⟩ = ⟨Af |f⟩

= ⟨f |Af⟩

= ⟨f |Af⟩

from the properties of scalar products and definition of the adjoint operator. Then A = A∗

implies that the expectation values ⟨f |Af⟩ are real. And, if the expectation value is real and
f ∈ DA, then

⟨f |Af⟩ = ⟨f |Af⟩

= ⟨Af |f⟩

and A = A∗ for f ∈ DA. As a consequence, observables are limited to Hermitian operators.
Significant examples of observables in nonrelativistic quantum mechanics are the Hermitian

location operators Xν . In L2,
⟨ψ|ψ⟩ =

∫
dx |ψ(x)|2

is finite at each time t with x = ct,x. The summation is over three dimensional space, R3.
Three location operators Xν , one for each of the three spatial dimensions, are given by

Xνψ(x) := xνψ(x).

There is no bound on the values assumed by location in a Euclidean space and consequently
the location operator is an unbounded operator. xνψ(x) is not necessarily square-integrable for
square-integrable ψ(x) and as a consequence, DXν ⊂ H, a proper subset. Functions ψ(x) ∈ L2
such that xνψ(x) ∈ L2 are dense in L2 but elements of slow decline are excluded from DXν

(e.g., ψ(x) = (1 + x2)−1+δ ∈ L2 for 1≫ δ > 0 in three dimensions but xνψ(x) ̸∈ L2).

6.2.7 Observation in Hilbert spaces

The Everett-Wheeler-Graham relative state interpretation of the formalism of quantum me-
chanics [11] escapes the measurment paradoxes and ad hoc assertions of earlier understandings.
The development describes observation from the premise that the “mathematical formalism of
quantum mechanics is sufficient as it stands” [11]. This interpretation becomes necessary to
realize relativistic quantum mechanics. Nonrelativistic concepts such as “collapse of the wave
function to an eigenfunction” are inconsistent with relativity. It would take a period of infinite
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duration for the support of a typical state describing function such as an energy eigenfunc-
tion of the hydrogen atom to collapse to a single point. The nonzero support of the energy
eigenfunction is infinite: the speed of light is finite. Causality requires that the time evolution
of state describing functions is expressed with operators that satisfy the Poincaré invariance
of likelihoods. Time evolution includes measurements. With the observer as well as the ob-
served included in the quantum mechanical description, time evolution is continuous, unitary
time translation and there is no need to distinguish what interactions constitute measurement.
The relative state description is consistent with our experience as well as consistent with the
quantum mechanical description of nature.

The process of observation is fundamental in quantum mechanics: observers are not omni-
scient and the interactions that constitute measurements affect the relevant description of the
state. This process explains how the perception of nature can differ from the description.In
classical physics, the state can be observed without disruption: an observer is external to the
systems under consideration and is essentially omniscient. However, in quantum mechanics,
observation is an interaction within the quantum description: an observation entangles descrip-
tions of the possible states of an observer with the observed. Observers are also described by
quantum mechanics. There is no “macroscopic” or “classical” domain governed by distinct
physical principles. A quantum description of state that describes a composite of system under
observation and observer evolves into a linear combination that describes distinct alternative
possibilities for observation. For example, an initially localized state spreads over space with
time and a distinct state of the observer becomes entangled with each possible outcome of a
subsequent localizing interaction. It is inconsistent with our experience that there is only one
observer state: observers perceive results from among possibilities. To be included in a quantum
description and avoid the difficulties described in the Schrödinger cat and EPR measurement
paradoxes [51, 16], a distinct state of the observer must be entangled with each of the pos-
sibilities for observation. Distinct perceptions are described by distinct states. Within linear
expansions of state descriptions, “we” are described by one of the possible states. This relative
state or “many worlds” description [11] derives naturally from the quantum mechanical de-
scription of state as elements of Hilbert spaces. Although inherent to quantum mechanics, this
natural interpretation is very different from classical concepts and it took several decades after
the initial formulations of quantum mechanics for the relative state interpretation to emerge.
Hugh Everett III, John Archibald Wheeler, Neill Graham and Bryce DeWitt developed the rela-
tive state interpretation of quantum mechanics [11]. Earlier interpretations maintained classical
descriptions for observers. Even the designation as “many worlds” betrays a classical predispo-
sition: many classical worlds but a unified, consistent quantum description. Consideration of
the state as a superposition over many classical worlds, each with a state described by classical
dynamical variables is an example of a persistent classical predisposition. The relative state
interpretation uses the natural quantum mechanical description of states by functions with en-
tanglement leading to a decomposition into relative states labeled by the perceived results of
observations.
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The quantum mechanical description of observations also explains our comfort with the
classical view: often, within the precision of our perceptions, the resulting quantum mechanical
description appears to replicate a classical description. However, a richer range of descriptions
is included among the descriptions of state in quantum mechanics. A localized interaction
results in observation of a localized state; two slits in a screen followed by localizing detectors
results in observation of wave-like interference when the initial states are widely supported and
propagate toward the screen. In common instances, the perception of a quantum description
is indistinguishable from a classical description although in general, in instances such as the
uniformly illuminated double slit, a quantum description of state deviates substantially from a
classical description. Quantum mechanics supersedes classical descriptions.

The states of an observer are labeled by their perceptions. The relevant final state of the
observed is determined by the entangled observer state, the result of an interaction characterized
as an observation. The likelihoods of the various possibilities are determined by scalar products,
the relevant initial state description, the description of perceived state, and chance. Chance
determines our particular perception from among the possibilities. Perceptions such as the
track of a planet may be the overwhelming likelihood within our measurment uncertainties, or
the likelihoods may deviate substantially from any classical descriptions such as for Young’s
double slit or the energy levels of an atom. Observation results in a random selection of our
perceived state from within a linear expansion of the temporal propagation of the initial state.
If |ψ⟩ describes an initial state including the description of our history of perceptions, then
an interaction of the observer and a system will result in an expansion of the evolved state.
The states in the expansion are states labeled by the possibilities for updated histories of the
observer’s perceptions,

|U(t)ψ⟩ =
∑
θ

|EθU(t)ψ⟩ =
∑
θ

∑
k

⟨g
k,θ
|U(t)ψ⟩ |g

k,θ
⟩. (193)

The initial state |ψ⟩ jointly describes the observer and observed, and the final state expands
in entangled descriptions for each of the possible perceived results θ of the observation. En-
tanglement was introduced in appendix 6.2.1 and entanglement develops in the time evolution
of a state that initially has independent descriptions for an observer and an observed. Consis-
tently with the separability of the Hilbert space, the notation in (193) is that this summation is
denumerably indexed, our observations have finite resolution. And, the notation applies when
the orthogonal subspaces associated with projections Eθ are spanned by a basis of elements
|g
k,θ
⟩, Eθ =

∑
k |gk,θ⟩⟨gk,θ|. The |g

k,θ
⟩ jointly describe states of the observer and observed.

The orthogonal projections Eθ are onto subspaces of the Hilbert space with descriptions of ob-
servers with a history of perceptions θ. Well designed measurements entangle descriptions that
approximate eigenstates for the measured quantityo with the observer’s states. Observers often

oDiscussed in section 2, these eigenstates may be distinct from eigenstates of the quantizations of the classical
dynamical variable.
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interpret the body’s state as an eigenstate of the quantization of the corresponding classical
variable. That is, for example, in a well designed measurement, the observer interprets the
perception of a state dominantly supported within a small neighborhood of xo as a point-like
body located at xo.

We never observe that recorded observations change, that further observations or com-
munications change the record of past measurements or that the current state is inconsistent
with past perceptions. This experience indicates that states labeled by distinct perceptions are
orthogonal: the Hilbert space decomposes into orthogonal subspaces labeled by the distinct
histories of observations. This decomposition provides no likelihood of transitions from our
history of perceptions to a distinct history. The observation may be in error or imperfect, that
is, the actual state entangled with an observer may not be the perceived state, but distinct
histories of perceptions lie in orthogonal subspaces. Perception do not spontaneously change.
Then,

EθEϑ = 0 if θ ̸= ϑ,

and
∑

θ Eθ = I at least within an orthogonal subspace that includes the initial state |ψ⟩ and
the states |g

k,θ
⟩ of interest. Whether this summation includes all possible states in the Hilbert

space is not of issue. Our only concern is a particular subspace |EθU(t)ψ⟩ that includes our
particular history of perceptions, us.

The likelihood of adding the observation described by g
k,θ

to the history of the observer is

given by Born’s rule,

Likelihood=Trace(Eθρ) =
∑
k

|⟨g
k,θ
|U(t)ψ⟩|2

in the case of a normalized vector state ρ := |ψ⟩⟨ψ| and with Eθ the projection onto the subspace
with orthonormalized basis |g

k,θ
⟩.

The Everett-Wheeler-Graham (EWG) interpretation includes a virtual collapse of the full
description of nature to a relative state entangled with an observer’s perception. Demonstrated
in [11] and illustrated below, conditional predictions based solely on this relative state agree
with predictions using the full description of state. This agrees with our experience; we need
only know what we have observed and other possibilities are of no consequence to our ability
to predict future outcomes. Alternative “worlds” have no reality for us. The alternatives do
not affect our predictions although our experience is one from among many possibilities. This
development resolves one of the mysteries of quantum mechanics: why do we never perceive
a state in a superposition over contradictory states like a superposition of ‘live cat’ and ‘dead
cat’ in Schrödinger’s cat thought experiment [51]? Our observations entangle us with one or
the other state. For the Schrödinger cat thought experiment, the descriptions of final states
would be a linear combination of the g

k,θ
that describes observation of a live cat entangled with

a live cat and an undecayed isotope, and an orthogonal state g
j,ϑ

that describes observation

of a dead cat entangled with a dead cat and a decayed isotope. The formalism of quantum
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mechanics is adequate to describe our experience. There is no need to augment quantum
mechanics with state collapse as well as unitary evolution. Early interpretations of quantum
mechanics included ad hoc assertions like “collapse of the wave packet” or “hidden variables”
in attempts to preserve a classical understanding. Further development has demonstrated that
our observations of nature are adequately described by quantum mechanics without such ad
hoc augmentations.

Preservation of a “classical domain” are less disruptive to established understanding but
incur the famous measurement paradoxes that illustrate the need for a quantum mechani-
cal treatment of measurement. These classical measurement paradoxes include the Einstein-
Podolsky-Rosen (EPR) [16], Schrödinger’s cat [51], and Wigner’s friend [65] paradoxes. The
EPR paradox is discussed in appendix 6.6 and illustrates that quantized, conserved quantities
can not be classically described. Schrödinger’s cat paradox illustrates that the quantum descrip-
tion can not be relegated to a microscopic world and Wigner’s friend illustrates the arbitrary
nature of assertions necessary to descriptions of measurement as “collapse of the wave packet.”
The paradoxes emerge from the adoption of contradictory concepts: a classical description for
observer with a quantum formalism for dynamics.

The EWG interpretation of quantum mechanics develops the concept of relative (entangled)
state. A Hermitian operator A corresponding to an observable has a real expectation values.
The conditional expectation is the expected value with states limited to a subspace of the
Hilbert space. A Hermitian rigged Hilbert space operator A is representedp as

A =
∑
k

akEk

with orthogonal projections Ek from a resolution of unity and ak ∈ R [21, 40]. Eigenvalues ak
are the observed values that follow for states in the subspaces EkH. The conditional expectation
value of the observable A conditioned upon an observer’s perception θ is

Eθ[A] :=
E[EθAEθ]
E[Eθ]

=
Trace(EθAEθρ)
Trace(Eθρ)

(194)

with ρ the nonnegative, unit trace, state density operator [60] discussed in appendix 6.2.6. The
Eθ are the orthogonal projections (193) that project onto subspaces of states that include the
observer perceptions labeled by history θ entangled with states of the observed. The Eθ project
onto composites of observed plus observer states. Two example constructions of composite
states are discussed below.

From the idempotence of projections and transpositional invariance of the trace (192) [27],
Trace(AB)=Trace(BA),

Trace(Eθρ) = Trace(EθρEθ)

pAppropriate limits of these summations are included.
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with EθρEθ the projection of the state density operator into the subspace labeled by θ. The
relative state density operator [11], relative to the observer history labeled θ, is

ρθ :=
EθρEθ
E[Eθ]

(195)

normalized to unit trace. The relative state density operators are orthogonal, ρθρϑ = 0 if
θ ̸= ϑ, and remain orthogonal with time evolution implemented by unitary time translation,
U(t)∗U(t) = 1. In terms of this relative state density operator, the conditional expectation is

Eθ[A] = Trace(Aρθ).

It was argued on physical grounds that states labeled by different histories of perceptions
were orthogonal since it is our experience that there is no likelihood of a change to history. As
a consequence, there will be a resolution of unity into projection operators Eθ labeled by the
perception histories θ. ∑

θ

Eθ = 1

with the θ labeling the possible histories of perceptions, plus one additional orthogonal subspace
of all remaining state descriptions. Distinguish this latter projection as E0. Decomposition of
the Hilbert space into orthogonal complements follows from the orthogonality of states with
distinct histories, and Riesz’s theorem on orthogonal subspaces in a Hilbert space [48].

If the operator A corresponding to an observable quantity is in the commutant of the Eθ
from (194), that is, if

[A,Eθ] = 0

for each Eθ except possibly with an exception for E0, then a mixture of the relative state density
operators ρθ is equivalent to the state density operator ρ. The resolution of unity

∑
Eθ = 1,

the idempotence of projections, commutation of A and the Eθ, the transposition invariance of
the trace (192) and the definition of relative state results in the equivalence.

E[A] = Trace(Aρ)

=
∑
θ

Trace(EθAρ)

=
∑
θ

Trace(E2
θAρ)

=
∑
θ

Trace(EθAEθρ)

=
∑
θ

Trace(AEθρEθ)

=
∑
θ

Trace(Aρθ)E[Eθ]

=
∑
θ

Eθ[A]E[Eθ].
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Then, using the definition of relative state density operator (195), if an operator A is in the
commutant of the Eθ, the mixture of relative states,

ρeq =
∑
θ

E[Eθ] ρ
θ

has the same observable properties as the complete state description ρ.

Trace(Aρ) = Trace(Aρeq). (196)

Each of the relative state density operators ρθ provide the expectation values conditioned on
a history of observer perceptions θ. The subspace E0H is of no interest. This equivalence
of a mixture of the mutually orthogonal relative state density operators with the complete
description of the state ρ explains why the quantum mechanical description of state is not
in contradiction with a classical concept for an observer. Each term in a mixture evolves
independently in time: knowledge of the entire state description is not required to propagate
the relative states forward in time. Conditional expectations are equivalent to distinguishing
one particular history, our history, as a classical observer. All our future observations evolve
from our current relative state description ρθ. We need not know or account for the “other
branches” to predict the future that is relevant to us, the future conditioned on our history. This
suggests the “collapse of the wave function” upon observation described in early developments
of quantum mechanics [60], but there is no physical distinction between a virtual and actual
collapse of the state description ρ to ρθ upon observation. An actual collapse would result in
a classical description of the observer but the universality of likelihood conservation, that is, a
unitary implementation of time translation, is preserved if the collapse is considered as virtual.
The equivalence remains with forward time translation.

U(t)ρU(t)∗ =
∑
θ

E[Eθ]U(t)ρθ U(t)∗.

The first example with system observables A and projections Eθ that commute is a tensor
product of two Hilbert spaces. The states of the observed are elements of a Hilbert space H1

and the states of the observer are elements of a Hilbert space H2. The Hilbert space of interest
is the tensor product, H = H1 ⊗ H2. A second example of this commutation is developed
in appendix 6.2.8 and is based on the strong cluster decomposition property of the VEV. The
second example describes a body that is initially distantly spatially separated from the observer
and the commutation is with arbitrarily great likelihood, but inexact since there are no state
descriptions of bounded support within HP . In both cases, the observables A commute with
the projections Eθ.

A tensor product is the composition of Hilbert spaces H1 and H2 into a composite

H := H1 ⊗H2.
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From descriptions of the body ψ, g ∈ H1 with scalar product ⟨ψ|g⟩1, and states of the observer
described u, v ∈ H2 with scalar product ⟨u|v⟩2, the tensor product composite Hilbert space H
has states labeled ψ ⊗ u, g ⊗ v with scalar product

⟨ψ ⊗ u|g ⊗ v⟩ := ⟨ψ|g⟩1 ⟨u|v⟩2.

If 1ek and
2ek are orthonormal bases for separable H1 and H2 respectively, then an orthonormal

basis for the composite Hilbert space has labels

ekj =
1ek ⊗ 2ej

and dim(H) = dim(H1) × dim(H2). Operators defined in H1 ⊗H2 include extensions of the
operators from H1 and H2. Hilbert space operators in the tensor product include C := A⊗B,

⟨ψ ⊗ u|C g ⊗ v⟩ := ⟨ψ|Ag⟩1 ⟨u|Bv⟩2.

Then any operators A⊗I commute with any I⊗B. IfH1 includes the descriptions of the observed
and H2 includes the descriptions of the observer, then this example satisfies the assertions
above in discussion of the physical equivalence of the mixture of relative states ρθ to ρ. For an
observation to occur, the time translation U(t) from (193) must couple the constituent Hilbert
spaces H1 and H2. Tensor products demonstrate that the assumed concept of observables for
a body in the commutant of the projections onto observer states is realizable. B(H1) ⊗ I and
I⊗B(H2) demonstrate that there are commuting sets of operators of interest. B(H) is the set
of all bounded operators for the Hilbert space H. That the tensor product composition suffices
to define a Hilbert space is discussed further in appendix 6.2.9. A simple example illustrating
entanglement and the commuation of observables with projections onto the observer states is
in appendix 6.15.

The equivalence of ρeq and ρ provides that there is no need for a collapse of state description
upon measurement. The relative state interpretation is the natural understanding of quantum
mechanics, bizarre images summoned by “many worlds” notwithstanding.

6.2.8 Localized observables, separation and independence

The intuitive notion that separation implies independence provides a second example of Her-
mitian operators A associated with the observed that (nearly) commute with projections Eθ
onto states that include a particular history of observer perceptions. Cluster decomposition
(27) provides that scalar products factor when the support of the functions that describe the
observed and observer are greatly space-like separated. This is suggestive of a tensor product
decomposition of Hilbert spaces.

This intuitive, satisfying property that separation imples independence is enabled by con-
sideration of localized observations. Observables essentially limited to bounded, isolated spatial
volumes associate observables with bodies. And, if the observed is greatly spatially isolated
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from the observer, then these observables (arbitrarily nearly) commute with projections onto
states that describe the observer. The approximate independence is that

0 ≈ ∥[Eθ, A]∥ ≪ ∥A∥

with A a Hermitian operator representing the localized observable and for projections ∥Eθ∥ = 1.
This commutation is the property used to develop the equivalence of the mixture of relative
states with a general state descriptions in the EWG development of observation discussed in
appendix 6.2.7. The commutation is only approximate because the supports of state describing
functions are not of bounded support: the functions within P are anti-local. In these instances,
the equivalence (196) of the mixture of relative states ρθ with ρ is to arbitrarily great likelihood.

In the constructions, the cluster decomposition condition (27) provides that the truncated
functions defined by cluster expansion (71) are connected functions,

CWk,n−k =
TWk,n−k.

The vanishing of connected functions CWk,n−k as the supports of arguments are greatly space-
like separated, and satisfaction of cluster decomposition (27) provides that

Wn,m((y)n+m) =Wj,ℓ((x)P )Wn−j,m−ℓ((x)P ′)

as λ → ∞ if yik = xk for ik ∈ P and yik = xk + (0, λa) for ik ∈ P ′ = {1, n + m}/P ,
the set complement of the j + ℓ-element set of integers P from {1, n + m}, with the evident
embellishment of the (x)n notation.

The demonstration is limited to a selected instance. The observed is an elementary particle
described by a one-argument function ψ(x). In the final, post measurement phase, the support
of ψ(x) is distantly spatially isolated from the support of the description of the observer. xo
is the time dependent location of the observed. A finite spherical volume centered on xo is
designated by Vxo . Vxo includes all but a negligible amount of the support of ψ(x). Assert that
there is a choice of eigenfunctions {eℓ(x)} such that: the support of every eℓ(x) outside of Vxo

is uniformly negligible; and the Hermitian operator Â associated with the observable is

|Âf⟩ := (0, A1f(x1), . . . ,

n∑
j=1

Ajfn((x)n), . . .) (197)

with

Ajfn((x)n) :=
∑
ℓ

aℓeℓ(xj)

∫
dy1dy2 W2(y1, y2)eℓ(y1)fn(x1, . . . xj−1, y2, xj+1, . . . xn).

W2 is the two-point function, and j ∈ [1, n]. The aℓ are the eigenvalues of the one-argument
subspace observable A associated with the eigenfunctions eℓ(x).

A =
∑
ℓ

aℓ|eℓ⟩⟨eℓ|



6 APPENDICES 143

and the state describing function expands in a linear combination of eigenvectors

ψ(x) ≈
∑
ℓ

⟨eℓ|ψ⟩ eℓ(x). (198)

The functions eℓ(x) are orthonormal,

⟨eℓ|eℓ′⟩ = δℓ,ℓ′ . (199)

The single argument operator Aj is A applied to the jth argument in the n-argument subspace.
A is asserted to be bounded and essentially localized within the volume Vxo . A is designated
essentially localized within Vxo if cluster decomposition (27) implies that

⟨f |Âf⟩ → 0 (200)

if the dominant support of a localized state |f⟩ is arbitrarily greatly space-like separated from
Vxo . These properties restrict the class of observables. For example, the linear harmonic
oscillator energy eigenfunctions are localized but not uniformly negligible outside of a bounded
volume: the greater the energy, the broader the support. The volume Vxo is selected so that
the contribution of any ψ(x) or eℓ(x) of interest beyond Vxo is arbitrarily negligible. Examples
of localized, one argument observables include location with the eℓ(x) ≈ δ(x−xℓ) and xℓ ∈ Vxo .

The second set of operators of interest are projections Eθ onto states that include particular
descriptions of the observer. The initial description of the observer is selected to be (nearly)
independent of the description of the observed: initially the observer and observed are unentan-
gled with distantly space-like separated supports. Eθ projects a joint, final, post-observation
description of observer and observed (193) onto a description with the observer described by a
particular new perception added to the history θ. The final state of the evolved observer state
is labeled h0 and the final observer states with the evolved perceptions are labeled hθ. These
descriptions of state do not include description of the observed. The supports of both the h0
and hθ within Vxo are arbitrarily negligible. Initial and final are long before and long after
the interaction that constitutes an observation. The projections onto the final observer states
labeled hθ are

Eθ := orthogonal projection onto the union of the ranges of Eg
ℓθ

(201)

defined from projections

|Eg
ℓθ
f⟩ :=

⟨g
ℓθ
|f⟩

⟨g
ℓθ
|g
ℓθ
⟩
|g
ℓθ
⟩

onto the product states defined
|g
ℓθ
⟩ := |eℓ × hθ⟩ (202)

with eℓ := (0, eℓ(x1), 0, . . .) the eigenfunctions of the observable.
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Estimates for the commutator of the observed’s essentially localized observable A with
the projections Eθ onto particular observer states follow from the initial independence, the
final distant spatial separation, and cluster decomposition (27). Demonstrated immediately
below, the definitions for the observables (197), (199), (198), and (200), projections (201), and
joint observer-observed states (202) in the rigged Hilbert spaces of relativistic quantum physics
provide that

|Eθ ψ × h0⟩ ≈ ⟨hθ|h0⟩ |ψ × hθ⟩

|Â ψ × h0⟩ ≈ |(Aψ)× h0⟩.
(203)

The projection onto particular observer states does not affect the description of the observed.
The likelihood of a particular final state of the observed is determined by the likelihood that
the evolved h0 has a nonzero projection onto hθ. The likelihoods of observed values for the
localized observable Â is determined only by the description of the observed.

The demonstration of (203) follows from the scalar product (21).

⟨g
ℓθ
|ψ × h0⟩ = ⟨eℓ × hθ|ψ × h0⟩

≈ ⟨eℓ|ψ⟩ ⟨hθ|h0⟩

as a consequence of the distant space-like final separation of supports and cluster decomposition
(27) of the VEV into connected functions. The separation of the volume Vxo from the final
support of the observer also provides that

⟨g
ℓθ
|g
ℓθ
⟩ = ⟨eℓ × hθ|eℓ × hθ⟩

≈ ⟨eℓ|eℓ⟩⟨hθ|hθ⟩

= 1

with the normalization ∥hθ∥ = 1. Similarly, ⟨g
ℓθ
|g
µθ
⟩ ≈ 0 if ℓ ̸= µ. This approximate orthogo-

nality then provides that

Eθ ≈
∑
ℓ

Eg
ℓθ

(204)
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from (201). As a consequence,

|Eθψ × h0⟩ ≈
∑
ℓ

|Eg
ℓθ
ψ × h0⟩

=
∑
ℓ

⟨g
ℓθ
|ψ × h0⟩
⟨g
ℓθ
|g
ℓθ
⟩
|g
ℓθ
⟩

=
∑
ℓ

⟨eℓ × hθ|ψ × h0⟩ |eℓ × hθ⟩

≈
∑
ℓ

⟨eℓ|ψ⟩ ⟨hθ|h0⟩ |eℓ × hθ⟩

= ⟨hθ|h0⟩ |ψ × hθ⟩

from substitution of the expansion (198) of the observed state. Eθ approximates a projection
operator with the desired property of projecting onto the observer state of interest independently
of the descriptions of the observed.

The form (197) of the local observable Â provides

Â ψ × h0 = (0, Aψ(x1)fo,0, . . .
n∑
j=1

Ajψ(x1)fo,n−1(x2, . . . xn), . . .)

≈ (0, Aψ(x1)fo,0, . . . (Aψ(x1))fo,n−1(x2, . . . xn), . . .)

= (Aψ)× h0

as a consequence of the distant spatial separations of the support of the eℓ(x) and h0, and
cluster decomposition. This completes the demonstration of (203).

From (197), the commutators of the Â and Eθ follow from

|ÂEθ ψ × h0⟩ ≈ ⟨hθ|h0⟩ |Â ψ × hθ⟩

≈ ⟨hθ|h0⟩ |(Aψ)× hθ⟩

and

|EθÂ ψ × h0⟩ ≈ |Eθ (Aψ)× h0⟩

≈ ⟨hθ|h0⟩ |(Aψ)× hθ⟩.

Then,
[Eθ, Â] ≈ 0
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for states that describe an observed and observer that are initially unentangled and distantly
space-like separated both initially and finally.

This development is not general but illustrates that separation and a lack of entanglement
provide independence. This demonstration is an alternative to the tensor product example.
This result is enabled within relativistic quantum physics by consideration of observations that
are essentially localized, the likely association of locations with the observed, and satisfaction
of cluster decomposition (27) in A.6.

6.2.9 Tensor products of linear vector spaces

Discussed in [60] and appendix 6.2.7, a tensor product is the composition of linear vector spaces
H1 and H2 into a composite

H := H1 ⊗H2.

From elements described g1, g2 ∈ H1 with degenerate scalar product ⟨g1|g2⟩1, and elements
described f1, f2 ∈ H2 with degenerate scalar product ⟨f1|f2⟩2, the tensor product composite
Hilbert space H includes states labeled g1 ⊗ f1, g2 ⊗ f2 with degenerate scalar product

⟨g1 ⊗ f1|g2 ⊗ f2⟩ := ⟨g1|g2⟩1 ⟨f1|f2⟩2. (205)

In this appendix, the sufficiency of this assignment to specify a degenerate scalar product on the
complete tensor product space is addressed. (205) is evidently a degenerate scalar product of
product elements g1⊗f1, g2⊗f2, but does this degenerate scalar product extend to all elements
of H?

First it is established that the Cauchy-Schwarz-Bunyakovsky inequality applies for all prod-
uct states, and then this result is used to demonstrate that the degenerate scalar product applies
to linear combinations of product states. Then, if H is defined as the completion of the linear
span of product functions, then the degenerate scalar product applies to H.

The Cauchy-Schwarz-Bunyakovsky inequality applies for all product states.

|⟨g1 ⊗ f1|g2 ⊗ f2⟩|2 = |⟨g1|g2⟩1|2|⟨f1|f2⟩2|2

≤ ⟨g1|g1⟩1⟨g2|g2⟩1⟨f1|f1⟩2⟨f2|f2⟩2

= ⟨g1 ⊗ f1|g1 ⊗ f1⟩⟨g2 ⊗ f2|g2 ⊗ f2⟩

from (205) and the Cauchy-Schwarz-Bunyakovsky inequality in the constituent linear vector
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spaces. As a consequence, (205) extends to linear combinations of product functions.

|⟨u+ v|u+ v⟩|2 = ⟨u|u⟩+ ⟨v|v⟩+ ⟨u|v⟩+ ⟨v|u⟩

= ⟨u|u⟩+ ⟨v|v⟩+ 2ℜe⟨u|v⟩

≥ ⟨u|u⟩+ ⟨v|v⟩ − 2
√
⟨u|u⟩⟨v|v⟩

=
(√
⟨u|u⟩ −

√
⟨v|v⟩

)2
≥ 0

if the Cauchy-Schwarz-Bunyakovsky inequality applies to the elements u, v. It applies for prod-
uct elements g ⊗ f and then nonnegativity applies to linear combinations of two product ele-
ments. Then, if the sum of two product elements has a nonnegative scalar product, then the
sum of three also does by a similar argument. Hence, all linear combinations of product ele-
ments are nonnegative. The degenerate scalar product extends to an complete tensor product
space if the space is defined as follows.

A denumerable basis of elements enm is defined from products of basis elements for the
constituent Hilbert spaces

enm := 1en ⊗ 2em

with 1en a basis for the separable H1 and
2em a basis for the separable H2. Then (205) provides

that
⟨enm|ekℓ⟩ = δn,kδm,ℓ

with Kronecker deltas. The enm are a basis for H1 ⊗H2 defined as the completion H of all
linear combinations of product states g ⊗ f in the norm from (205). Nonnegativity extends to
all convergent limits.

⟨u|u⟩ = ⟨
∑
n,m

anmenm|
∑
k,ℓ

akℓekℓ⟩ =
∑
n,m

∑
k,ℓ

anmakℓδn.kδm,ℓ =
∑
n,m

|anm|2

that is manifestly nonnegative.

6.3 Translations, location operators and relativistically invariant localized
states

Hermitian Hilbert space operators that correspond to location are discussed in this appendix.
Discussed below, multiplication of the Fourier transforms f̃n((p)n) of functions by pν gen-

erates translations in location and multiplication of the functions fn((x)n) by xν generates
translations in momenta. Translation invariance of the scalar product and Stone’s theorem
leads to the conclusion that momenta are densely defined Hermitian operators in nonrelativis-
tic physics. However, in relativistic physics, the scalar product is not invariant to translations
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in momenta. In a nonrelativistic development, the L2 scalar product is invariant to translations
in momenta but in a relativistic development, the universality of the speed of light dictates a
Lorentz invariant scalar product. As a consequence, multiplication by xν does not generate a
unitarily implemented symmetry in a relativistic development. If multiplication by xν were a
densely defined Hermitian operator, then translations in momentum would be unitarily imple-
mented and the scalar product would be momentum translation invariant. Multiplication of
functions by xν can not correspond to the location operator in relativistic physics since it can-
not be Hermitian, and as developed in appendix 6.2.6, only Hermitian operators are associated
with observables. It is demonstrated in section 5 that the operator Xν that quantizes xν is not
Hermitian. Despite its commutation with the momentum operators, the “position” operators
Xν are not Hermitian for the relativistic scalar product (21).

From the properties (18) of the Fourier transform, translation of a function corresponds
to multiplication of the Fourier transform by e−ipa. Recall that px = p0ct − k · x, a Lorentz
invariant. For both free fields and the constructions, the Hamiltonian is H = ℏcp0 [33]. From
the scalar product (21), translation of the function to x−a corresponds to translation of a field
by x+ a. Fourier transforms correspond

e−ipaψ̃(p)↔ ψ(x− a)

and then for sufficiently small ∥a∥, Taylor theorem polynomial approximation of the exponential
function and ψ(x) provide that

(1− ipa)ψ̃(p)↔ ψ(x)− a · dψ(x)
dx

.

Then the operator Pν that corresponds to multiplication of the Fourier transform by pν is

Pν = −iℏgνν
d

dxν
.

The Minkowski signature g is (19). With

U(a)ψ(x) := ψ(x− a),

the translation invariance of the scalar product provides that translations U(a) are unitary and
the generators,

U(a) = exp(−iap),

are the energy-momentum operators Pν = ℏpν . From Stone’s theorem, the energy-momentum
operators are densely defined and Hermitian. Pν is evidenly unbounded. Similarly, multi-
plication of functions by xν generates translations in energy-momenta. Fourier transforms
correspond

eiqxψ(x)↔ ψ̃(p− q)
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and then for sufficiently small ∥q∥,

(1 + iqx)ψ(x)↔ ψ̃(p)− q · dψ̃(p)
dp

.

Then the operator Xν that corresponds to multiplication of a function by xν is

Xν = igνν
d

dpν
.

With
T (q)ψ̃(p) := ψ̃(p− q),

if the scalar product were energy-momentum translation invariant then the

T (q) = exp(iqX)

would be unitary and its Hermitian generators would be the location operators Xν . The cor-
respondence of Xν and Pν with location and momentum respectively is established in the
interpretation of the support of the arguments of functions as spacetime coordinates and of
the Fourier transforms as energy-momenta in units of wavenumber. Considering only spatial
coordinates, ν = 1, 2, 3,

Xν = xν ,−i
d

dpν
and Pν = iℏ

d

dxν
, ℏpν (206)

that apply to functions or the Fourier transforms of functions, respectively. Signs are determined
by the convention for the Fourier transform (16). The Xν and Pν given by (206) canonically
commute. But the properties of Xν and Pν as Hilbert space operators depend on the Hilbert
space realizations, that is, depend on the scalar product. In the Hilbert space L2 appropriate
for nonrelativistic physics [52], the scalar product is both spacetime and energy-momentum
translation invariant and Xν and Pν are both densely defined Hermitian operators. For a
relativistic scalar product, only the Pν are Hermitian since in relativistic physics, there is only
translation invariance of the scalar product. Demonstrated in section 5, multiplication by xν
is not realized as a Hermitian Hilbert space operator for the relativistically invariant scalar
products of elementary particle states.

The identification of Xν as the location operator and Pν as the momentum operator in
nonrelativistic physics results in the Born-Heisenberg-Jordan relation for their commutator.

[Xν , Pν ] = −iℏ.

This commutation implies the Heisenberg uncertainty relation as discussed in appendix 6.7
and a Baker–Campbell–Hausdorff identity implies that similarity transforms of the location
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operators translate the eigenvalues.

e−iaνPν/ℏXνe
iaνPν/ℏ = Xν +

iaν
ℏ

[Xν , Pν ]

= Xν + aν .
(207)

As a consequence, there is a simultaneous eigenfunction of the Xν for every a ∈ R3 given a
function that is in the union of the null spaces of the Xν , ν = 1, 2, 3. From Xνψ0(x) = 0,

ψa(x) := eia1P1/ℏeia2P2/ℏeia3P3/ℏψ0(x) satisfies Xνψa(x) = aνψa(x).

This result followed solely from the Born-Heisenberg-Jordan relation and there are many other
differential operators X̂ν that also canonically commute with the momentum operators Pν .
These differential operators X̂ν also have eigenstates associated with every location in R3.

From Clairaut’s theorem, the operations

X̂ν = −iu(p) d
dpν

u−1(p) (208)

mutually commute as long as u(p) is twice continuously differentiable. The X̂ν canonically
commute with the energy-momentum operators,

[X̂ν , Pµ] = −iℏδν,µ

with ν, µ = 1, 2, 3. Then, there is a class of differential operators X̂ν parametrized by twice
continuously differentiable functions u(p) that satisfy the Born-Heisenberg-Jordan commutation
relations [X̂ν , Pν ] = −iℏ (213) and that mutually commute, [Pν , Pµ] = [X̂ν , X̂µ] = 0. The
operations potentially correspond with observables only if they are Hermitian in the scalar
product of the Hilbert space realization of interest.

The location operators X̂ν are determined by the Hilbert space realization of quantum me-
chanics. Three distinct sets of location operators are developed in this appendix: the elevation
of xν that applies in a canonical quantization of nonrelativistic physics (206); an X̂ν for the
relativistic free field realized in Fock space; and an X̂ν for the relativistic constructions based
upon the basis function spaces P from section 3.7. The eigenfunctions of these operators are la-
beled by locations a ∈ R3, are orthogonal for distinct locations as a consequence of Hermiticity
[3], and are dominantly supported near each location a although they are not of point support
in the relativistic cases. In relativistic physics, the lack of negative energy support and Lorentz
covariance of the states implies that Dirac delta functions are not generalized eigenfunctions of
a Hermitian operator within the Hilbert space.

The evident correspondence of particles with state descriptions provides that location op-
erators apply for descriptions of free fields [31, 61]. A free field decomposes into canonically
commuting particle creation and annihilation operators; every state can be represented as a
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linear combination of particle creation operators applied to the vacuum state. When there
is interaction, as discussed in section 3.1, these location operators apply to states in the one
particle subspace and more generally provide a location for indeterminant bodies. If high or-
der connected functions contribute significantly, then states are not necessarily interpretable as
classical particles and the location of a particle as an observable is not evident. The extension
of a single particle operator to multiple particle states (15) is a second quantization that follows
(197) for the constructions when interaction is lacking. The discussion of section 3.1 illustrates
that general state descriptions are not associated with determined numbers nor types of parti-
cles. A particle interpretation is a classically inspired perception of the quantum description of
state.

In (208), u(p) = 1 is the Hermitian location operator Xν in the Hilbert space L2 applicable
in nonrelativistic physics. The eigenfunctions of the Xν are Dirac delta functions and ideally
associated with classical locations. More generally, in nonrelativistic limits, ∥ℏp∥ ≪ mc, X̂ν ≈
Xν if u(p) ≈ u(mc/ℏ, 0, 0, 0). However, as discussed in section 2, eigenfunctions for a Hermitian
operator are orthogonal in the Hilbert space scalar product. The u(p) in (208) suffice to select
Hermitian operators X̂ν in realizations of relativistic physics [43].

The Hermitian operator associated with location is in the form (212) derived from the
association of classical bodies with states that are dominantly supported within small isolated
volumes. From the discussion of Heisenberg’s uncertainty principle in appendix 6.7, product
states with factors

f̃(p) :=
(p0 + ω)φ̃(p)√

2ω

have scalar products that coincide with the L2 scalar product of the φ̃(p) in the one-particle
subspace or more generally for states that are well described by classical particles. Using the
translates (207), and a selection of Dirac delta sequences

ψ̃0(p) = ω1/2e−L2(p−w)2 → ω1/2

with L → 0 for φ(x) result in the relativistically invariant localized functions of [43]. For the
relativistic free field construction based upon the basis function spaces P [31], the Hermitian
operator that corresponds to location has the additional constraint that the eigenfunctions must
not be supported on negative energy mass shells.

ψ̃0(p) =
(p0 + ω)√

2ω
e−L2(p−w)2 → (p0 + ω)√

2ω
.

That is, X̂ν : P 7→ P is required. States labeled by distinct locations a ̸= a′ become orthogonal
as L→ 0 and then there is a (generalized) eigenfunction associated with every location a ∈ R3.
In both cases, the functions ψ̃a(p) are appropriate test functions that label elements of the
constructed Hilbert space when L is finite and nonnegative.
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If u(p) = ω1/2 or u(p) = (p0+ω)/ω
1/2 with ω from (13), then the resulting X̂ν is Hermitian

in the one particle subspace for the relativistic scalar product. From (37),

⟨f1|X̂νg1⟩ =

∫
dp

2ω
δ(p0 − ω)f̃1(p)

(
−iω1/2 d

dpν
ω−1/2g̃1(p)

)
= −i

∫
dp

2
ω−1/2f̃1(ω,p)

d

dpν
ω−1/2g̃1(ω,p)

= i

∫
dp

2

(
d

dpν
ω−1/2f̃1(ω,p)

)
ω−1/2g̃1(ω,p)

= ⟨X̂νf1|g1⟩

(209)

from integration by parts.
An alternative method to associate X̂ν with location is to set X̂ν equal to a Hermitian

operator derived from Xν .

X̂ν :=
1

2
(Xν +X∗

ν )

with the adjoint operators X∗
ν defined for the free field scalar product (209). Then

X̂ν f̃1(p) = − i
2

(
d

dpν
+ ω

d

dpν
ω−1

)
f̃1(p)

= −ir
(
f̃ ′
1(p)−

ω′

2ω
f̃1(p)

)
= −iω1/2 d

dpν
ω−1/2f̃1(p)

from ⟨X∗
νf1|g1⟩ := ⟨f1|Xνg1⟩, (209), integration by parts, and with the prime designating

differentiation with respect to pν . However, this method is not general. In this case of location,
the adjoint shares a dense domain with Xν . The adjoint of the field Φ(f)∗ from (25) is generally

undefined for the constructions and Φ̂(f) = 1
2(Φ(f) + Φ(f)∗) is then not Hermitian.

The relativistic location eigenfunctions, the relativistically invariant localized functions, are
orthogonal. The two-point function for a free field (37) is expressed using the Fourier transforms,

W2(ψ
∗g) =

∫
dp

2ω
ψ̃(ω,p) g̃(ω,p)

and then the relativistically invariant localized functions centered on distinct locations a and
a′ are orthogonal.

W2(ψ
∗
aψa′) = 1

2

∫
dp e−ip·(a′−a)

= 1
2(2π)

3 δ(a− a′).
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To characterize the spacetime support of ψ̃a(p), [43] uses a transform with a Lorentz co-
variant measure supported solely on the mass shell,

fa(x) := 2λ2c

∫
dp

(2π)3/2
θ(E)δ

(
p2 − λ−2

c

)
eipxψ̃a(p)

= λ2c

∫
dp

(2π)3/2
1

ω
eiωct−ip·xψ̃a(p).

In the limit L→ 0 and for t = 0, ψ̃a(p) =
√
λcω e

ip·a and

fa(x) = F (r/λc)

with
F (r/λc) = cF (λc/r)

5/4H
(1)
5/4(ir/λc), (210)

a Hankel function H
(1)
5/4(z), dimensionless real constant cF , and r2 := (x − a)2 [1, 43]. The

dominant support of F (r/λc) is near r = 0 due to the divergence as r−5/2 at the origin and
a rapid decline bounded by exp(−r/λc) at large r. λc is the reduced Compton wavelength.
The relativistically invariant localized functions fa(x) do not equal zero within any spatial
neighborhood.

By the characterizations developed in section 2, states such as relativistically invariant
localized states would typically be perceived as localized states despite their lack of bounded
support. The relativistically invariant localized states are essentially localized within a volume
of radius proportional to the Compton wavelength of the body, 3.0× 10−13 m for an electron.

6.4 Location, a prototype correspondence in relativistic quantum physics

Location contradicts a canonical quantization in relativistic physics. Location is a classical dy-
namical variable represented by a spatial argument of a state describing function in a canonical
quantization. Elevation of location to quantum mechanical operator is not Hermitian in rela-
tivistic physics [43, 66]. Location demonstrates that a canonical quantization is not generally
available. One significant distinction between relativistic and nonrelativistic physics is that the
scalar product is invariant to velocity shifts in a nonrelativistic development but a universal
and finite speed of light precludes velocity shift invariance in relativistic developments. The
elevation of x is Hermitian in nonrelativistic but not relativistic physics as a consequence.q

The elevation of location is the Hermitian location operator in nonrelativistic physics, but a

qAs a consequence of ⟨eiq·xf(x)|eiq·xg(x)⟩ = ⟨f(x)|g(x)⟩ for the L2 scalar product applicable in nonrelativistic
physics, the generator of velocity shifts, the quantization of x, is Hermitian. The scalar product in relativistic
physics uses a Källén-Lehmann form two-point function [9] and then eiq·x is not Hermitian.
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Hermitian elevation of location is precluded by relativity even for free fields, [43, 66] and section
5. Yet, clearly, location remains an observable.

The quantization of location, also designated the elevation of location, is the Hilbert space
operator with eigenfunctions that are Dirac delta functions over space. Every point in R3 is
an eigenvalue of the quantization of location and the eigenfunctions are generalized eigenfunc-
tions. The number of orthogonal generalized eigenfunctions of location is uncountable and these
eigenfunctions can therefore not be elements of a separable rigged Hilbert space, section 5. The
point support of a Dirac delta function corresponds with the classical concept of location as
a point in R3. The Hermitian Hilbert space operator that corresponds to location is distinct
from the canonical quantization of location. Quantizations are not necessarily Hermitian. From
[13, 60] and appendix 6.2.6, to correspond to a classical dynamical variable, that is, to have a
real expected value for all state descriptions, a Hilbert space operator must be Hermitian. How-
ever, the relayivistic Hilbert space scalar product is not compatible with eigenfunctions that are
delta functions. Eigenfunctions of a Hermitian Hilbert space operator with distinct eigenvalues
are necessarily orthogonal in the Hilbert space scalar product [3]. A relativistic scalar product
has a Källén-Lehmann form two-point function to achieve the physically necessary properties
of Poincaré invariance and positive energies. Dirac delta functions are not orthogonal in this
scalar product.

⟨f(x0)δ(x− y1)|f(x0)δ(x− y2)⟩ ≠ 0 when y1 ̸= y2.

Hence, Dirac delta functions over space can not be the eigenfunctions of a Hermitian operator
in relativistic physics [43, 66].

With the revised, approximate and conditional quantum-classical correspondence, there are
Hermitian operators X̂ν that correspond to location in relativistic physics. The eigenfunctions
of these operators are Theodore Newton and Eugene Wigner’s relativistically invariant local-
ized functions [43]. In the momentum domain, the relativistically invariant localized functions
ψx(x1) [43] are

ψ̃x(p) = (2ω)
1
2 e−ipx (211)

labeled by spacetime points x ∈ R4. These functions are generalized eigenfunctions of a Hermi-
tian operator defined in the Hilbert space for a relativistic free field. There is an eigenfunction
with eigenvalue x for every location x ∈ R3. For nonrelativistic momenta, ψ̃x(p) ≈ (2m)

1
2 e−ipx

and in this sense the relativistically invariant localized functions approximate Dirac delta func-
tions. For the constructions, one-argument functions always describe a single elementary parti-
cle and the X̂ν are location operators for that elementary particle in the one-particle subspace.
In subspaces with a greater number of arguments and with relativistic momenta in a multiple
species construction, the X̂ν remain location operators but the location is not associated with
a determined number nor species of particles. These functions are also discussed in appendix
6.3.
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Hermitian location operators X̂ν are described by spectral theory for rigged Hilbert space
operators (theorem 1, appendix to section 4 [21], lemma 5.6.7 [40], and chapters 7-10 [24]). The
three Hermitian location operators are

X̂ν :=

∫
R3

dx xνEx. (212)

Ex ∼ |ψx⟩⟨ψx| projects one-argument functions in HP to the relativistically invariant localized
functions located near x at time x0 = ct (211). ν = 1, 2, 3, x = x0,x with x ∈ R3 and xν
are the three Cartesian components of x. The relativistically invariant localized functions are
mutually orthogonal, ⟨ψy1 |ψy2⟩ = 0 if y1 ̸= y2 and y10 = y20. The relativistically invariant

localized functions are generalized eigenfunctions of the X̂ν .

X̂νψx(x1) = xνψx(x1),

and

Qχ :=

∫
χ
dx Ex

are projection operators that provide a resolution of unity. dx is Lebesgue measure on R3,
and the χ refer to measurable volumes within R3. From the orthogonality of the ψx(x1),
ExEx′ = 0 if x0 = x′

0 and x ̸= x′. The Qχ are projections (idempotent, self-adjoint operators)r

in the one particle subspace of HP . The functions ψx(x1) are essentially localized but not
strictly localized. The ranges of the projections Qχ are subspaces of positive energy, Poincaré
covariant, essentially localized states and orthogonal projection operators are Birkhoff and von
Neumann’s experimental propositions [6, 60].

There are many first order linear differential operators that canonically commute with the
Hermitian momentum operators Pν . Examples are constructed in appendix 6.3 and include:
the Hermitian quantization Xν of x applicable in L2 Hilbert spaces of nonrelativistic physics;
the Hermitian operator X̂ν that has Newton and Wigner’s relativistically invariant localized
functions [43] as eigenfunctions and applies in Fock space developments of the relativistic free
field; and the Hermitian operator that applies for the section 3 construction of a Hilbert space
based on P.

For a free field, the Hermitian location operator X̂ν in (212) that applies in the one-particle
subspace extends to multiple argument states by second quantization. If the interaction of states
is significant then multiple-argument components of states are not necessarily interpretable as

rExEx′ = 0 if x ̸= x′ and t = t′, and then QχQχ′ = 0 if χ∩χ′ = ∅ for spatial volumes χ, χ′ within a constant
time plane. The functions ψx(x1) and ψx′(x1) are orthogonal at coincident times. However, evaluated at distinct
times t ̸= t′, ExEx′ ̸= 0. If there were Q∆ such that Q∆Q∆′ = 0 for projections onto spacetime volumes
∆,∆′ ⊂ R4 with ∆ ∩ ∆′ = ∅ and space-like separated, then those Q∆ = 0 [66]. There are no such projections.
The volumes with QχQχ′ = 0 are insufficient to conclude from Bogolubov’s edge of the wedge theorem that
Qχ = 0.
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determined numbers or species of particles, section 3.1. The number and species of particles and
even whether the state is perceived as particles is not evident unless interaction is negligible for
the state of interest. That is, a free field location operator necessarily applies approximately only
for states that are well represented by classical particles. Free field and nonrelativistic states
are readily interpreted as consisting of particular numbers and species of particle. Otherwise,
the dominant supports of multiple argument functions correspond to likely locations but the
numbers and species of particles at those locations is indeterminant.

Relativistic location illustrates a key difference between the less constrained, alternative
development and a canonical quantization: the distinction between an elevation of a classi-
cal dynamical variable and a Hermitian operator that corresponds to the classical dynamical
variable. For location, three quantities are distinguished: x, Xν , and X̂ν . The vector x ∈ R3

specifies a classical location and a point in the domain of the state describing functions. The Xν

for ν = 1, 2, 3 are elevations of the three components of x, operators with Dirac delta functions
as generalized eigenfunctions. And, the X̂ν are Hermitian Hilbert space operators with gener-
alized eigenfunctions that are the relativistically invariant localized functions of Newton and
Wigner [43]. These generalized eigenfunctions describe the natural generalization of localized
states in a relativistic development. The “elevation of c-number to q-number” conjecture is
that the Xν should equal X̂ν . The contradiction to the Hermiticity of Xν in relativistic physics,
included in section 5, is a “localization problem” of RQFT. The relativistically invariant local-
ized functions conditionally approximate Dirac delta functions. That a small neighborhood of
a location x includes all perceptions of location to arbitrarily great likelihood suffices physically
as the description of localized. Location in relativistic physics is also discussed in [43, 66],
section 3.1, and appendix 6.3. The “localization problem” as well as the lack of nontrivial real-
izations in relativistic quantum physics are overcome by adopting more appropriate relativistic
quantum-classical correspondences.

With consideration limited to observation of features associated with classical bodies, if we
calculate that the bodies move guided by fields A(x)κ with sources on the bodies (e.g., the
Lorentz force and Maxwell’s equations in electrodynamics, or geometrodynamical gravity) and
this classical dynamics produces an accurate approximation to the quantum dynamics when the
supports of state describing functions are well represented by classical bodies, then we would
say that the quantum model corresponds with the classical field theory. This correspondence is
valid regardless of whether there is a “quantization” of the classical fields. A correspondence of
classical field theory with quantum dynamics is established by the approximation of the motions
of observed bodies.

6.5 Inconsistency of the classical description with nature

Quantum mechanics is a striking change from classical descriptions. Several competing schools
of thought persist on whether quantum mechanical descriptions actually depict nature. The
difficulty for many is that quantum mechanics forces us to abandon well-developed classical
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intuition.
The considerations listed below require a general abandonment of classical concepts. The

conflict of classical concepts with nature is illustrated by many considerations including:

1. Planck’s calculation of the spectrum of black body radiation

2. the heat capacity of solids

3. the photoelectric effect

4. Stokes fluorescence and Compton scattering

5. Gibb’s paradox

6. the creation and annihilation of particles

7. interference patterns in a Michelson interferometer at very low “single quantum at a time”
light intensity

8. discrete energy bands in the radiation spectra from atoms

9. the Einstein-Podolsky-Rosen paradox for conserved quantities such as angular momentum,
discussed in appendix 6.6.

Taken together, these considerations do not rectify with a classical world view. Each is a
motivation for quantum mechanics, and together with principles of simplicity and universality,
a quantum mechanical description for nature is indicated.

For consistency with observations, Max Planck’s calculation for the spectrum of black body
radiation included that the energy in electromagnetic radiation is quantized in discrete particle-
like amounts with an energy E proportional to photon frequency ν, E = hν. h became known
as Planck’s constant. Planck’s revelation and Albert Einstein’s insight that the photoelectric
effect is also explained by a quantized photon energy produced agreement with observation.
The observed photoelectric effect is strong evidence for the interpretation of electromagnetic
radiation as photons. In the photoelectric effect, electrons are not emitted from a surface until
the light frequency is sufficient, that is, until the light quanta include sufficient energy that the
dominant reaction, interaction of an electron with a single photon, results in an electron with
sufficient energy to escape the surface. This observation is (nearly) independent of the amplitude
of the incident radiation. The exception is nonlinear optics, if the electron absorbs the energy
of multiple photons. These results contradict the classical description of electromagnetism as
waves and energy as a freely specified real parameter. If the illumination is a wave, we should
anticipate that once the amplitude of the wave was sufficient that electrons would escape the
surface. In his identification of the quantized energy E = hν of an electromagnetic field,
Einstein was also motivated by the observed heat capacity of solids, in particular, contradictions
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to the equipartition of energy in classical statistical mechanics, and Stokes fluorescence [55],
that the frequency of a photon emitted by a body was less than the illuminating frequency.
(Stokes fluorescence has since been supplemented with observations of anti-Stokes radiation,
when vibrational modes of an emitter contribute to the energy of the re-emitted photon.)
Together with Joseph John Thomson’s observations of the electron, Robert Milliken and Harvey
Fletcher’s measurement of a discrete electric charge, and Jean Perrin’s observations and Albert
Einstein’s description of Brownian motion, these findings provided motivation for the descripion
of matter as a composition of atoms.

The indistinguishability of bodies of the same mass, spin, polarization and charges naturally
resolves Gibb’s paradox. Gibb’s paradox arises if entropy is not an extensive quantity. In
statistical physics, an extensive quantity is proportional to the amount of substance, that is, for
an extensive entropy, twice the volume of gas should have twice the entropy. Were entropy not
extensive, then Gibbs paradox is a violation of the second law of thermodynamics, that entropy
of isolated systems does not decrease. Other solutions have been suggested to resolve Gibb’s
paradox, but the indistinguishability of bodies is a natural resolution consistent with the Bose-
Einstein or Fermi-Dirac statistics of similarly described bodies in quantum mechanics. Note
that this indistinguishability is in contradiction to the classical concept that the trajectories of
individual bodies can be distinguished and followed.

The creation and annihilation of particles is another contradiction to the classical concept
of continuous trajectories. In these cases, trajectories disappear and trajectories with distinct
descriptions appear. Such transformations of identifiable bodies are not described by classical
physics. With creation and annihilation, one cannot follow the trajectory of a single identifiable
entity, nor generally even determine the number of bodies in a relativistic state description.

A Michelson interferometer consists of two light paths split and later recombined using a
half-silvered mirror, two reflecting mirrors, and an optical path matching slab of clear glass.
An interference pattern of light and dark intensity rings is visible on detectors at an end of
the optical path, for example, on photographic film. This pattern persists even as the intensity
of the light is lowered. From the model of light quanta established in the photoelectric effect
and Planck’s calculation of black body radiation spectra, it follows that the illumination can
be reduced to less than a single photon at a time within the interferometer on average. This
establishes that each photon interferes with itself, and since the arms of the interferometer are
separated and can be of unequal length, that the photon takes both paths. This contradicts
a classical description of the photon as a classical particle with a definite trajectory. The
interference pattern is consistent with the classical concept of electromagnetism as a wave,
but that description is contradicted by the photoelectric effect. The interferometer is a strong
argument for the reality of the quantum description of state. It is difficult to understand how at
low intensities the interference pattern can be responsive to changes in arm path length without
a physical presence in each of the two separate arms for each photon.

Discrete line spectra observed in emissions of light, for example, from a gas of hydrogen
or sodium atoms, contradict that energy is a real number parameter, an initial condition for
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classical equations of motion. Line spectra contradict that any in a range of real numbers
can provide the initial conditions that result in a hydrogen atom. There is no mechanism
within classical descriptions that results in the observed atomic spectra (nor the observed heat
capacities of solids at low temperatures). One of the predictions of nonrelativistic quantum
mechanics is line spectra, and observations of the Lamb shift of hydrogen atom energy levels is
one of the most precise tests in physics. The Lamb shift is correctly estimated by the Feynman
series rules for quantum electrodynamics.

Quantum mechanics resolves many observed flaws of classical descriptions, from extensive
entropy to conservation laws for quantized quantities to discrete atomic spectra to the con-
sistency of observed interference patterns with particle-like descriptions of waves. Despite all
this, classical descriptions of physics continue to be used as the underpinnings of quantum
physics. The concept of a continuous evolution of distinguishable bodies traveling trajecto-
ries, the descriptions of Newtonian physics and Einstein’s geometrodynamics, are evidently
useful approximations to quantum physics but in limited instances. The concept that quantum
dynamics is the “quantization” of these classical dynamic descriptions rests on expedience, ex-
perience with nonrelativistic quantum mechanics, and successful but limited phenomenology.
Any correspondence of quantum with classical need only occur in appropriate instances, and
canonical quantization is an unjustified extrapolation otherwise.

6.6 The Einstein-Podolsky-Rosen paradox

The Einstein-Podolsky-Rosen (EPR) [16] paradox and confirmation of Bell’s inequalities [5]
illustrate that a classical description is inconsistent with nature. The quantum mechanical de-
scription of nature has been described as “bizarre” but, this description reflects that quantum
mechanics demands rejection of long established classical concepts. The EPR paradox [16]
illustrates that the quantum mechanical description of nature contradicts classical concepts.
Einstein, Podolsky and Rosen develop the argument that quantum mechanics must be incom-
plete because the quantum description conflicts with a classical concept of state. Of course,
the alternative is that the classical description is inconsistent with nature. To develop the
EPR paradox, it is observed that spin angular momentum is quantized with the same discrete
values on any axis of observation. The paradox arises if a spin zero particle decays into two
spin one-half particles that subsequently fly apart. Sufficiently separated, we can determine
the spin state of an arbitrarily distant particle by observing the paired particle: the distant
spin is the one that paired with the near spin conserves angular momentum. The paradox is
that we determine the spin of the non-causally related distant particle differently as determined
by our selection of measurement axis. If the distant particle is classically described, then it
has a determined spin unaffected by our observation of the nearby particle. The resolution
to the conflict is entanglement, a concept in quantum mechanics that is not supported in a
classical description. That is, the resolution of the EPR paradox is not a contradiction to quan-
tum mechanics but a contradiction to classical concepts, to the classical description of state.
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Entanglement is natural in the Hilbert space description of multiple particle states [50]. The
paradox is resolved by the realization that a classical description is not consistent with nature.
Although Einstein motivated quantum mechanics with studies of the photoelectric effect and
the heat capacity of solids [55], he is perhaps most celebrated for his understanding of time and
motion described in special relativity and geometrodynamical gravity. Einstein’s derivation of
gravity relies on classical description of nature. Expressed in the EPR paradox, Einstein did
not embrace implications of quantum mechanics. I presume that Einstein was persuaded by
his immensely successful insights into time and motion using classical concepts that are in con-
flict with quantum mechanics. Also, more consistent perspectives on quantum mechanics [11]
developed later. The principle of equivalence, that acceleration is equivalent to a gravitational
force, relies on the classical description of a body characterized by a trajectory. In a quantum
mechanical description, the characterization of the velocity of a body deteriorates with en-
hancements in location accuracy: both location and velocity are never known with a precision
that exceeds the Heisenberg uncertainty bound. We cannot arbitrarily precisely associate the
acceleration of a body with its locations.s It is a great irony that just as problematic aspects
of Newtonian mechanics were resolved with dynamical, relativistic time and the equivalence of
acceleration with gravitation, atomic physics necessitated the new mechanics that supersedes
classical developments.

Flaws in classical physics such as a non-causal radiation reaction force in classical electrody-
namics [29] can be tolerated since classical descriptions only approximate the more fundamental,
and causal, quantum descriptions. Indicated in Feynman’s quote in section 4, it could be antic-
ipated that the transition from the well established and successful practice of classical physics
to quantum mechanics would be slow. Even though it was observation that necessitated the
development of the new mechanics, adoption of quantum mechanics is inhibited by the es-
tablished reliance on classical concepts. Quantum mechanics is the more comprehensive and
unified model. Although the classical perspective is an accurate approximation of the quantum
description in our common experience, the classical perspective is contradicted by nature.

6.7 Heisenberg uncertainty

One of the great insights in the development of quantum mechanics is that location and mo-
mentum are not independently specified descriptions of bodies. Both location and momenta
derive from a state describing function ψ(x). The supports of functions ψ(x) are associated
with the likelihoods of locations and the supports of the Fourier transforms ψ̃(p) are associated

sAlthough for typical nonrelativistic Hamiltonians acceleration and location commute, [Xν , [H,Pν ]] = 0,
an estimate for acceleration from a sequence of localizing measurements fails due to the lack of a trajectory
precisely associated with a quantum description. Each observation conveying location knowledge contributes
velocity uncertainty. There are no classical state descriptions included in quantum mechanics. For many states,
particularly state descriptions with high energies and overlapping supports, the principle of equivalence does not
even approximate the evolution for the state describing functions.
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with the likelihoods of momenta. Likelihoods are provided by Born’s rule from the Hilbert
space scalar product. Mean values of location and momentum are independently specified but
variances are constrained as described by the Heisenberg principle. The Heisenberg uncertainty
principle follows from the quantum mechanical description of states. If the scalar product is L2,
appropriate in nonrelativistic physics, then the location operator corresponds to the Hermitian
operator realized by multiplication of the function ψ(x) by the value of an argument xν and
the momentum operator corresponds to the Hermitian operator that is the similarly quantized
multiplication of ψ̃(p) by pν in the momentum domain. Using the Fourier transform relations
(18) and linearity, in L2 location corresponds to −iℏd/dpν and momentum to iℏd/dxν . This is
discussed further in appendix 6.3. If at a time t the support of ψ(x) is dominantly supported
in the neighborhood of a point y(t), then

⟨ψ|Xνψ⟩ :=
∫
dx xν |ψ(x)|2 ≈ yν(t)

∫
dx |ψ(x)|2 = yν(t)

for a normalized ψ(x). y(t) is any suitable representative of the neighborhood of support. From
Parseval’s equality (17), the definition of Fourier transform (16) and implied identities, if at a
time t the support of the Fourier transform ψ̃(p, t) is dominantly supported near a momentum
q(t) = ℏp(t), then with ν = 1, 2, 3,

⟨ψ|Pνψ⟩ := ℏ
∫
dp pν |ψ̃(p, t)|2 = iℏ

∫
dx ψ(x, t)

dψ(x, t)

dxν
≈ qν(t).

There is no knowledge of momentum for a location eigenfunction, and no knowledge of
location for a momentum eigenfunction. Are there classical-like selections for functions that
describe quantum mechanical states? Here, a nearly classical state is one with both location and
velocity known precisely. For finite masses, the time derivative of location is velocity v and in
the nonrelativistic approximation p ≈ mv. There is no bound on the precision of knowledge of
the mass. Are there states that approximate both location and momentum arbitrarily well? The
result is that there is an optimal accuracy that can be simultaneousally obtained for knowledge
of location and momentum, and a choice of functions that provides the optimal simultaneous
knowledge. This result is the Heisenberg uncertainty principle. In quantum mechanics, not
only is dynamics no longer described by a smooth trajectory specified by an initial location
and velocity, but we cannot know both the location and the time derivative of the location
of a body sufficiently well to specify a trajectory. That is, our description of state does not
support the concept of Newtonian mechanics. The Heisenberg uncertainty principle is a lower
bound on the breadth of the supports in location and momentum in a quantum mechanical
description. We can approximate the location and time derivative of location for a body, and this
approximation becomes better the heavier the body, but the concept of Newtonian mechanics
is not supported by the quantum description of state. Also, in quantum mechanics, we cannot
necessarily identify a particular body to propagate forward in time. Similarly described bodies
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are indistinguishable and cannot be labeled to identify a trajectory except while a single body is
sufficiently isolated from other bodies to reliably identify the body. While isolated, a dominant
volume in the support of a function that describes a state can be identified and followed with
a high likelihood until it approaches other similar bodies. At this point, its identity becomes
lost in ambiguity.

The Heisenberg uncertainty principle is derived in ordinary, nonrelativistic quantum me-
chanics. It is a result that follows from the L2 scalar product applicable in nonrelativistic
physics. In L2, three location operators Xν = xν and three momentum operators Pν = iℏd/dxν ,
one for each spatial dimension, are self-adjoint in L2 and satisfy the Born-Heisenberg-Jordan
relation

[Xν , Pν ] = −iℏ, (213)

a canonical commutation relation (CCR). For an arbitrary state |ψ⟩ labeled by a function
ψ(x) ∈ L2 in the intersection of the domains of Xν and Pν (with convergent |⟨ψ|Xνψ⟩| and
|⟨ψ|Pνψ⟩|), define operators

A := Xν − ⟨ψ|Xνψ⟩, and B := Pν − ⟨ψ|Pνψ⟩.

ν = 1, 2 or 3 and the intersection of the domains includes states labeled by the Schwartz
tempered functions that are dense in L2. From the commutation of Xν and Pν it follows
that [A,B] = −iℏ and that A,B are mean zero for the state |ψ⟩. From the interpretation of
⟨ψ|Aψ⟩ as the mean value of the quantity associated with the operator A for normalized states
⟨ψ|ψ⟩ = 1, identify variances of location and momenta as

σ2x = ⟨ψ|A2ψ⟩, and σ2p = ⟨ψ|B2ψ⟩.

Self-adjointness of A and B follows from the self-adjointness of Xν and Pν on L2. Self-
adjointness and the Cauchy-Schwarz-Bunyakovsky inequality then provide that

|⟨ψ|ABψ⟩|2 = |⟨Aψ|Bψ⟩|2 ≤ ⟨Aψ|Aψ⟩ ⟨Bψ|Bψ⟩ = ⟨ψ|A2ψ⟩ ⟨ψ|B2ψ⟩ = σ2xσ
2
p.

The lower bound, equality, is achieved if |Aψ⟩ = c|Bψ⟩ for a complex constant c. From the
definition of commutator, linearity of scalar products, and the property of scalar products that
⟨u|v⟩ = ⟨v|u⟩, identify that

⟨ψ|[A,B]ψ⟩ = ⟨ψ|ABψ⟩ − ⟨ψ|BAψ⟩ = ⟨ψ|ABψ⟩ − ⟨ABψ|ψ⟩ = 2iℑm(⟨ψ|ABψ⟩),

twice the imaginary part. The imaginary part of z has a magnitude bounded by the magnitude
of z. This bound and the commutation relation for A and B result in that

|⟨ψ|[A,B]ψ⟩|2 = |iℏ⟨ψ|ψ⟩|2 = ℏ2 = |2iℑm(⟨ψ|ABψ⟩)|2 ≤ 4|⟨ψ|ABψ⟩|2 ≤ 4σ2xσ
2
p.

This is Heisenberg’s uncertainty principle. For states in L2,

σxσp ≥ ℏ/2,
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a lower limit on the geometric mean of the variances of location and momentum. This limits
the simultaneous accuracy of location and momentum descriptions in each dimension ν. The
lower bound is achieved if ⟨ψ|ABψ⟩ is imaginary and |Aψ⟩ = c|Bψ⟩ for c ∈ C. The labels ψ(x)
with x ∈ R3 for the states that meet both lower bounds are Gaussian functions (97),

ψ(x) =
e−(x−xo)2/(4L2)+ipox/ℏ

(2πL2)
1
4

.

These Gaussian functions satisfy

⟨ψ|ABψ⟩ = i

∫
R3

dx
(x− xo)2

2L2
|ψ(x)|2

that is imaginary and

Aψ(x) = (x− xo)ψ(x) = cBψ(x) = c(−iℏdψ(x)
dx

− poψ(x)) = c
iℏ(x− xo)

2L2
ψ(x)

for real xo := ⟨ψ|Xνψ⟩ and po := ⟨ψ|Pνψ⟩, c = 2L2/(iℏ) and ⟨ψ|ψ⟩ = 1. The parameter L = σx
and σp = ℏ/(2L). This is the function shape in each dimension. The spatial function that labels
a minimum uncertainty state is the product of three factors, one for each spatial dimension.
These Gaussian functions are denoted minimum packets and are the states most classical-like
states in the sense that the geometric mean of the uncertainties in simultaneous knowledge of
the location and momentum of the state is minimized.

The Heisenberg uncertainty principle applies in relativistic physics with some revision. In a
relativistic development, the operators Xν (|Xνψ⟩ := |xνψ⟩) are not self-adjoint and therefore
are not the quantization of location. As a consequence, the development above of the Heisenberg
uncertainty relation does not apply for operator pairs Xν , Pν . Nevertheless, the Heisenberg
uncertainty principle applies when classical approximations to the relativistic physics apply,
and with Xν replaced by the Hermitian X̂ν := −iℏω1/2d/dpνω

−1/2, the relativistic, single
body location operator [43]. Classical particle approximations apply when states are described
by functions with isolated (105) concentrations of support well represented by a single location
(102) and momentum (103). The eigenfunctions of X̂ν are the relativistically invariant localized
functions. If the X̂ν is used in the development of the Heisenberg uncertainty relation, then the
minimum uncertainty packets are not Gaussian functions. The relativistic minimum uncertainty
packets are normalized inverse Fourier transforms of

ψ̃(p) = ω1/2e−σ2
o(p−w)2eip·xo/ℏ.

If the state description consists of sufficiently isolated concentrations in the support of each
argument and these supports are well represented by single locations and momenta, then the
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state can be represented by classical particles and the Heisenberg uncertainty principle applies
for functions ψ(x) used to define functions in HP .

φ̃(p) :=
(p0 + ω)ψ̃(p)√

2ω
∈ HP . (214)

Due to cluster decomposition, the contributions to scalar products of the high order connected
functions are negligible when a state consists solely of widely spatially isolated bodies. In these
cases, the Wk,n−k are well approximated by the free field contribution (44) to the VEV. From
(44), the significant contributions to scalar products (21) for product states fn,

fn((x)n) =
n∏
j=1

φj(xj) ∈ HP

and functions φj with Fourier transforms of the form (214) consists of sums of products of
factors W2(φ

∗
jφℓ). Substitution results in

W2(φ
∗
jφℓ) =

∫
dp1dp2 W̃2(p1, p2)φ̃j(−p1)φ̃ℓ(p2)

=

∫
dp1dp2 δ(p1 + p2)

δ(p01 + ω1)√
2ω1

δ(p02 − ω2)√
2ω2

φ̃j(−p1)φ̃ℓ(p2)

=

∫
dp2 ψ̃j(p2)ψ̃ℓ(p2)

=

∫
dx ψj(x)ψℓ(x).

(215)

This is the L2 scalar product of the ψj(x). The Heisenberg uncertainty bound applies to the
breadths of location and momentum support of W2(φ

∗
jφj) with ψj(x) substituted for φj(x).

Gaussian functions provide an explicit example of an expansion of a state description as a
linear combination of more localized Gaussian elements in the Hilbert space. The identity

e
− x2

4L2
0 =

√
1

ϵ2(1−ϵ2)4L2
0π

∫
ds e

− s2

4(1−ϵ2)L2
0 e

− (x−s)2

4ϵ2L2
0

with 0 < ϵ ≪ 1 is an expansion of the more broadly supported Gaussian function as a linear
combination of arbitrarily narrower Gaussian functions centered on s. This expansion is in one
dimension. The likelihood of a transition from the normalized state characterized by

ψ(x) = Nψe
− x2

4L2
0

to the more localized, normalized state characterized by

gs(x) = Nse
− (x−s)2

4ϵ2L2
0
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is

|⟨gs|ψ⟩|2 =
2ϵ

1 + ϵ2
e

− s2

4(1+ϵ2)L2
0

with ⟨ψ|ψ⟩ = ⟨gs|gs⟩ = 1. As anticipated, the likelihood of transition to a function centered on
s declines rapidly the farther s is from the center of support at x = 0. And, the likelihood of
transition to a function of width ϵσ declines slowly with reductions in relative function spread.

6.8 Feynman-Dyson series and the constructions

A renormalized perturbative series for scattering amplitudes [23, 52, 61] is discussed in this
appendix to contrast Feynman (also refered to as Feynman-Dyson, or Dyson) series scattering
amplitudes with the explicit scattering amplitudes from the constructions in section 3. In
this appendix, the comparison of quantum mechanical constructions with Feynman series is
illustrated for the example of one neutral scalar field Φ(x), Nc = 1. Feynman series apply only
to scattering [8], to infinite interval transition amplitudes.

From section 3.9, the constructed scattering amplitudes are infinite interval limits of more
general state transition amplitudes. Appropriate states are interpretable as classical bodies
described by momenta using plane wave limits of localized states. For states (2) described by
product functions of point support at times λj and with momentum support centered on qj ,

fn((x)n) =
n∏
j=1

ℓ(xj ;λj ,qj)

[33, 35, 37], a transition from m to n freely propagating particles is described by the LSZ
(Lehmann-Symanzik-Zimmermann) expressions for scattering amplitudes [9],

Sn.m = lim
λ→∞

⟨U(λ)ℓ(λ,qm+1) . . . ℓ(λ,qm+n)|U(−λ)ℓ(−λ,q1) . . . ℓ(−λ,qm)⟩

= lim
λ→∞

⟨U(λ)Φ(ℓ(λ,qm+1)) . . .Φ(ℓ(λ,qm+n))Ω|U(−λ)Φ(ℓ(−λ,q1)) . . .Φ(ℓ(−λ,qm))Ω⟩
(216)

and

Sn.m = lim
λ→∞

⟨U(λ)Φ(ℓ(λ,qm+n))U(λ)−1 . . . U(λ)Ω|U(−λ)Φ(ℓ(−λ,q1))U(−λ)−1 . . . U(−λ)Ω⟩

with U(λ) the unitary time translation operator, and applying the definition of field (2) with
the notation of section 3.1.3. The state describing functions ℓ(xj ;λj ,qj) are described in (96)
in section 3.9.

ℓ̃(pj ;λj ,qj) := eiEjλj (ωj + Ej)f̃(pj − qj)

with λj ∈ R, qj ∈ R3 and f̃(p) ∈ S(R3). ℓ(xj ;λ,qj) is within the completion HP of the P(R4)
described in section 3.7, Ω designates the vacuum and the VEV are constructed in section



6 APPENDICES 166

3. S(R3) includes functions with Fourier transforms that are delta sequences with supports
concentrated near the momenta qj . A convenient choice for function f̃(p) is the Gaussian
function (97), a point-wise nonnegative delta sequence. The cluster decomposition axiom A.6
provides that the Gaussian functions ℓ(xj ;λ,qj) are described at large times as free particles if
the functions ℓ(xj ;λ,qj) are translated to center the spatial support on free particle trajectories
with distinct momenta qj .

The LSZ scattering amplitudes (216) are VEV of products of temporal translations of fields
Φ(ℓ(t,q)). From section 3.9 and with λj := λ, temporal translations of these fields are inde-
pendent of time.

U(t)Φ(ℓ(t,q))U(t)−1 = Φ(ℓ(0,q))

due to the limitation of the spectral support of VEV from section 3 to mass shells and the
selection of compensating phases in ℓ(xj ;λj ,qj). In the constructions, the scattering amplitudes
(216) are fully quantum mechanical transition amplitudes defined for any state and including
finite time differences.

The RQFT [7, 23, 52, 61] rule for calculation of plane wave scattering amplitudes is to
evaluate the generalized functions

Sn,m((p)n+m) := ⟨Φ̃+
o (pn) . . . Φ̃

+
o (p1)Ωo|UD(t,−t)Φ̃+

o (pn+1) . . . Φ̃
+
o (pn+m)Ωo⟩ (217)

for t =∞. These scattering amplitudes are expanded in free field VEV. Free field operators are
distinguished in this appendix by the notation Φo(x). The Dyson operator UD(t1, t2) is provided
below in (222). Creation components Φ+

o (x) of free fields are introduced in section 3.3.1. The
scattering amplitudes Sn,m((p)n+m) apply the Fourier transform of generalized functions [19],

Φ+
o (f) = Φ̃+

o (f̃). (218)

Introduced in section 3.3.1, the free field

Φo := Φ+
o +Φ−

o

has a cyclic vacuum state Ωo and an annihilation component Φ−
o Ωo = 0. From section 3.8, the

operator adjoint of Φ+
o is

Φ+
o (f)

∗ = Φ−
o (f

∗) (219)

using the dual (8) for functions on the right-hand side and the Hilbert space operator adjoint
on the left-hand side. The adjoint is

Φ̃+
o (p)

∗ = Φ̃−
o (−p)

from the Fourier transform (218) and ∗-dual (8). For f ∈ P(R4), Φo(f) = Φ+
o (f) as a conse-

quence of the support constraint on functions in P. From section 3.3.1, the commutators of
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free field creation Φ+
o and annihilation Φ−

o components provide that

[Φ−
o (x), Φ̃

+
o (p)] =

δ+(p)eipx

(2π)2
(220)

using the definition of Fourier transforms for generalized functions (218), the Fourier transform
(16), and the notation

δ±(p) := θ(±p0)δ(p2 − λ−2
c )

from (37). The adjoint results in

[Φ̃−
o (−p),Φ+

o (x)] =
δ+(p)e−ipx

(2π)2
.

The commutation relations and annihilation of the vacuum by Φ−
o provide the convenient result

⟨Ωo|(Φ−
o (x))

k
n∏
j=1

Φ̃+
o (pj) Ωo⟩ =

n! δk,n
(2π)2n

n∏
j=1

δ+(pj)e
ipjx (221)

demonstrated by induction and using the Kronecker delta, δk,n = 0.
The Feynman series for scattering amplitudes results from the Neumann series solution with

the Dyson operator substituted into the scattering amplitudes (217). The Dyson operator is

UD(λ1, λ2) := eiH0λ1e−iH(λ1−λ2)e−iH0λ2

= I− i
∫ λ1

λ2

ds Hint(s)UD(s, λ2)
(222)

evaluated with λ1 = −λ2 → ∞. The resulting Volterra equation of the second kind for
UD(λ1, λ2) is satisfied formally by the Dyson operator. In (217), Φo(x) is a neutral scalar
free quantum field and H0 generates time translations of these free fields. The Hamiltonian H
is expressed in free fields.

H := H0 +Hint

with a conjectured interaction Hamiltonian for a self-interacting, neutral scalar field of

Hint(x0) =
∑
ℓ≥4

aℓ

∫
dx : (Φo(x0,x))

ℓ : . (223)

The summation is over all x ∈ R3. The notation : (Φo)
ℓ : designates normal ordering of the

Hamiltonian (223). Normal ordering designates that the factors of Φ+
o and Φ−

o in the binomial
expansion of (Φo)

ℓ are ordered with every Φ−
o to the right of any Φ+

o [7, 23, 52, 61]. Normal
ordering sets ⟨Ωo|Hint Ωo⟩ = 0 but does not place the vacuum |Ωo⟩ in the null space of the
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Hamiltonian, |Hint Ωo⟩ ̸= 0. From the Campbell-Baker-Hausdorff expression for this example
of a boson field,

: exp(αΦo) : = : exp(αΦ−
o + αΦ+

o ) :

= exp(αΦ−
o ) exp(αΦ

+
o )

= exp(αΦ−
o + αΦ+

o ) exp(−α2

2 [Φ−
o ,Φ

+
o ]).

From section 3.3.1, the commutator is central, commutes with both Φ+
o and Φ−

o , in the algebra
generated by Φ+

o and Φ−
o . Note that [Φ−

o (x),Φ
+
o (y)] diverges for x = y and this is one of many

divergences encountered in the elevation of classical to quantum Hamiltonian in the canonical
formalism. Normal ordering is not a linear operation on the algebra generated from Φ+

o and
Φ−
o . A contradiction to a general specification for normal order as a linear operation in the

algebra of fields is illustrated by the free field commutation relation

[Φ−
o (f1),Φo(f2)] =W2(f1 f2).

Normal ordering produces

: [Φ−
o (f1),Φ

+
o (f2)] : = 0 ̸= :W2(f1 f2) : =W2(f1 f2).

The choice of Hamiltonian (223) associates RQFT with a classical field model. Normal or-
dering determines an order for the non-commuting operators that elevate commuting classical
dynamical variables.

The first contributing order of the Neumann series for the Dyson operator UD(λ1, λ2) is to
approximate

UD(λ1, λ2) ≈ I− i
∫ λ1

λ2

ds Hint(s).

Then, the first contributing order to the Feynman rules scattering amplitude (217) is the gen-
eralized function

Sk,n−k((p)n) = ⟨Φ̃+
o (pk) . . . Φ̃

+
o (p1)Ωo|UD(∞,−∞)Φ̃+

o (pk+1) . . . Φ̃
+
o (pn)Ωo⟩

≈ ⟨Ωo|
k∏
j=1

Φ̃−
o (−pj) (I− i

∫ ∞

−∞
ds Hint(s))

n∏
j=k+1

Φ̃+
o (pj)Ωo⟩

= ⟨Ωo|
k∏
j=1

Φ̃−
o (−pj) (I− i

∑
ℓ

aℓ

∫
dx
∑
ν

(
ℓ
ν

)
(Φ+

o (x))
ν(Φ−

o (x))
ℓ−ν)

n∏
j=k+1

Φ̃+
o (pj)Ωo⟩.

The normal ordered binomial expansion and commutation relations (220) provide that the only
term that does not include forward scattering contributions has ℓ = n and ν = k. Other
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terms include forward contributions and are discarded in this characterization of the connected
function CWk,n−k associated with a non-forward scattering amplitude. An associated connected
VEV derives from the non-forward contribution to

−ian
(
n
k

)∫
dx ⟨Ωo|

k∏
j=1

Φ̃−
o (−pj) (Φ+

o (x))
k(Φ−

o (x))
n−k

n∏
j=k+1

Φ̃+
o (pj)Ωo⟩

= −ian
(
n
k

)∫
dx ⟨Ωo|

k∏
j=1

Φ̃−
o (−pj) (Φ+

o (x))
kΩo⟩⟨Ωo(Φ−

o (x))
n−k

n∏
j=k+1

Φ̃+
o (pj)Ωo⟩

= −i n! an
(2π)2n−4 δ(−p1. . .−pk+pk+1. . .+pn)

n∏
ℓ=1

δ+(pℓ)

= −icn δ(−p1. . .−pk+pk+1. . .+pn)
n∏
j=1

δ(p2j − λ−2
c )

= −i CW̃k,n−k((−p)k, (p)k+1,n).

Commutations of Φ̃−
o (−pj) with Φ̃+

o (pℓ) produce forward contributions and are discarded in the
second line. Substitution of (221) and the Fourier expansion of the delta function results in the
third line. Equality of the third lines and fourth lines applies for the energy support constrained
functions from the completion of basis spaces P, and not for all tempered functions S. Factors
θ(Ej) in the δ+(pj) are redundant with the support constraints for either the appropriate
function in P or ∗-dual (8) of P. The coefficients aℓ in the Hamiltonian (223) and the cn in the
description of the VEV (53) are related

cn :=
n! an

(2π)2n−4 .

In the final line, a neutral scalar field connected VEV CW̃k,n−k from section 3.4 is identified
and substituted. For Hamiltonians (223), the first order contribution to the Feynman series

scattering amplitude (217) coincides with the Fourier transform of a connected VEV CW̃k,n−k
from section 3.4. While the Hamiltonian (92) of the construction is distinct from the conjectured
canonical formalism Hamiltonian (223), the weak coupling scattering amplitudes of the two
developments nearly coincide: the Feynman series continues with renormalized, higher powers
of the interaction Hamiltonian. The phase ‘i’ is irrelevant except for phase differences between
forward and non-forward contributions, and the effects of these phases vanish in the scattering
limit. The phase difference implements nonnegativity of the scalar product A.2.

The first contributing order of the scattering amplitudes (217) coincide up to a phase with
the constructed scattering amplitudes (98) for a neutral scalar field. Then, the scattering am-
plitudes of low order expansion in RQFT and the constructions are the same: the Feynman
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rules scattering amplitudes asymptotically coincide at weak coupling with the scattering am-
plitudes from the fully quantum mechanical constructions. This equality persists in non-scalar
field examples if relativistic corrections to the Feynman series are made in appropriate cases
[35].

A justification for the RQFT rule (217) from an asymptotic equality of free and interacting
fields develops contradictions. If the free field were unitary similar to the interacting field at
asymptotic times, λ→ ±∞,

e−iHλΦ(f)eiHλ = e−iH0λΦo(f)e
iH0λ

with
Ωo = eiHλe−iH0λΩ,

then the scattering amplitude (217) would follow. The unitary similarity of interacting and free
fields, and translation invariance of vacuums would provide that

⟨Φ(f
k
) . . .Φ(f

1
)Ω|Φ(f

k+1
) . . .Φ(f

n
)Ω⟩

= ⟨Φo(fk) . . .Φo(f1)Ωo|UD(λout , λin)Φo(fk+1
) . . .Φo(fn)Ωo⟩.

(224)

However, neither precedent is true.

1. If a unitary similarity implied (224), that similarity would contradict the Haag (Haag-Hall-
Wightman-Greenberg) theorem [9, 56, 64]. Haag’s theorem demonstrates that unitary
similarity of free and interacting fields is not possible. Unitary similarity applies to fields
Φ and Φo that are densely defined operators in a common Hilbert space [24].

2. In the Fock space of the free field, translation invariance of the free field VEV (44) provides
that the free field vacuum Ωo is translation invariant. But, this vacuum is not invariant
to eiHλ, HintΩo ̸= 0. The all creation operator term contributes. For example, from the
commutation relation (220) and VEV (221), the Fourier transform of delta functions, and
the annihilation of the vacuum by Φ−

o , it follows that

⟨Φ̃+
o (pk) . . . Φ̃

+
o (p1)Ωo|HintΩo⟩ = ak⟨Φ̃+

o (pk) . . . Φ̃
+
o (p1)Ωo|

∫
dx (Φ+

o (x))
kΩo⟩

=
k! ak

(2π)2k−3 δ(p1+. . .+pk)
k∏
j=1

eiωjx0δ−(pj)

̸= 0

for the Hamiltonians (223).
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Higher order contributions to the Feynman series for scattering amplitudes (217) diverge
but terms are renormalized (regularized) to achieve convergent contributions in each order of
the iteration (217). If a finite number of regularizations suffice to achieve convergent terms
to all orders, then the interaction Hamiltonian is denoted renormalizable. Indications are that
summations of the regularized Feynman series diverge [56].

6.9 The degenerate scalar product for free field VEV

It is well established [9, 56] that the sesquilinear form (21) defines a degenerate scalar product
for function sequences from S with free field VEV (38). In this appendix, the demonstration
that the free field VEV define a degenerate scalar product for function sequences from F is
replicated in the notation and methods of these notes. The sesquilinearity of the form (21) is
verified by inspection, and it suffices to demonstrate that the sesquilinear form is nonnegative.

From the result (68) that
F = exp ◦(CF)

with
CF = (0, 0,W2, 0, . . .),

in section 3.4.4, that positively weighted linear combinations of function sequences generate
degenerate scalar products if the terms individually generate degenerate scalar products (21),
that the ◦-product preserves signed symmetry, section 3.4.4, and that the ◦-product preserves
nonnegativity of signed symmetric factor sequences, section 3.5.1, a demonstration of the non-
negativity for CF suffices to demonstrate the nonnegativity of F . The nonnegativity for CF
follows immediately from the nonnegativity of the free field two-point function (37). The alter-
native demonstration below validates results of sections 3.4.4 and 3.5.1.

Every state labeled by a sequence from S is a linear combination of states labeled by function
sequences P. Discussed in [31] and applying the development of section 3.3.1, this result follows
from the commutation relations

[Φ−(f1)κ1 ,Φ
+(f2)κ2 ]± =W2(f1 f2)κ1κ2 ,

the properties of the vacuum state, and the limitation of the energy support of the creation
component to positive energies. There is a cyclic vacuum state with ⟨Ω| . . .Φ−(f)κΩ⟩ = 0 and
⟨Ω|Φ+(f)κ . . .Ω⟩ = 0. The expansion of a state described by an f ∈ S into a description by an
g ∈ P results from normal ordering the factors of the creation and annihilation constituents of
the field, Φ(f)κ = Φ−(f)κ + Φ+(f)κ. As a consequence, a demonstration of the nonnegativity
of the degenerate scalar product (21) for function sequences P suffices for the free field VEV.
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From (44) in section 3.3.1, the free field VEV for P are

Fk,k({1, 2k}) =
∑
S

σ(S)
k∏
j=1

W2({j, ij})

=
1

k!

∑
S

∑
S′

σ(S)σ(S′)
k∏
j=1

W2({i′j , ij})
(225)

with the abbreviated notation σ(S) := σ(S, (κ)n) for signs from section 3.4. The summation∑
S includes the k! distinct orderings of {k + 1, 2k} and result in k! distinct pairings j, ij

with j ∈ {1, k} and ij ∈ {k + 1, 2k}. The summation
∑

S′ includes the k! distinct orderings
of {1, k}. From the discussion of section 3.4, symmetry of Fk,k({1, 2k}) under the indicated
transpositions of arguments and that σ(S, (κ)n)

2 = 1 results in equality of the two expressions.
S = {1, . . . k, i1, . . . ik}, S′ = {i′1, . . . i′k, k+1, . . . 2k} and evaluation of the signs σ(S, (κ)2k) = ±1
is discussed in (62) with σ(So) = 1 for So = {1, . . . k, k + 1, . . . 2k}.

The nonnegativity of the matrix DM(p) results in a factorization (39), DM(p) = C†(p)C(p)
with D the Dirac conjugation matrix from (8) and C†(p) is the Hermitian transpose of C(p).
Substituted into (37), this factorization results in

DW2(x1, x2)κ1κ2 =

∫
dp1dp2 e

ip1x1+ip2x2δ(p1 + p2) δ
+
2 DM(p2)κ1κ2

=

Nc∑
ℓ=1

∫
dp2 e

−ip2(x1−x2) δ+2 C(p2)ℓκ1C(p2))ℓκ2 .
(226)

With the designation of symmetrized functions

hk((x)k)(κ)k
:=
∑
S

σ(S)(κ)k
fk({i1, . . . ik})

and for the free field VEV (225), the sesquilinear form (21) becomes

F(f∗, f) =
∑
n,m

∑
(κ)n+m

∫
d(x)n+m (D·)nFn,m((x)n+m)(κ)n+m

×fn(xn, . . . x1)κn...κ1 fm(xn+1, . . . xn+m)(κ)n+1,n+m

=
∑
k

1

k!

∑
(κ)2k

∫
d(x)2k

k∏
j=1

DW2(k+1−j, k+j)

×hk(xk, . . . x1)κk...κ1 hk(xk+1, . . . x2k)(κ)k+1,2k
.
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Relabeling summation variables, the factorization (226) and the Fourier transform (16) produce

F(f∗, f) =
∑
k

1

k!

∑
(κ)2k

∫
d(x)2k

k∏
j=1

(

Nc∑
ℓj=1

∫
dpj e

ipj(xj−xk+j)δ+j Cℓjκj
(pj)Cℓjκk+j

(pj))

×hk(x1, . . . xk)κ1...κk
hk(xk+1, . . . x2k)(κ)k+1,2k

=
∑
k

1

k!

∑
(ℓ)k

∫
d(p)k

(
k∏
i=1

δ+i

) ∣∣∣∣∣∣
∑
(κ)k

 k∏
j=1

Cℓjκj
(pj)

 h̃k((p)k)(κ)k

∣∣∣∣∣∣
2

that is manifestly nonnegative and completes the demonstration.

6.10 Temporal evolution of function supports

For every f̃(p) ∈ S(R3),
φ̃(p) = (p0 + ω)e−iEλf̃(p)

is a function within HP . λ is real parameter that translates the temporal support. The inverse
Fourier transform of the state describing function φ̃ is

φ(x) =

∫
dp

(2π)2
eipx(p0 + ω)f̃(p)

=

(
−i ∂
∂x0

+
√
λ−2
c −∆

)∫
dp0

(2π)
1
2

eip0(x0−λ)
∫

dp

(2π)
3
2

e−ip·xeiωλf̃(p)

= (2π)
1
2

(
−i ∂
∂x0

+
√
λ−2
c −∆

)
δ(x0 − λ)f(λ,x)

(227)

with ∆ the Laplacian for R3, the derivative of δ(t) is a generalized function [19], and the
function f(λ,x) ∈ S(R3) for any real λ.

f(λ,x) :=

∫
dp

(2π)
3
2

e−ip·xeiωλf̃(p) (228)

with ω = ω(p) from (13) and f̃(p) ∈ S(R3). In the conventions of section 4.2, φ(x) defines
functions supported on time x0 = λ with spatial support described by f(λ,x).

For a rotationally invariant function f̃ , the z-axis of the parametrization of p can be aligned
with the z-axis for any selected spatial vector x. In this instance, changing summation variables
to polar coordinates results in

p · x = ρr cosϕ
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with

ρ2 := p2

r2 := x2

and

f(λ,x) :=

∫ ∞

0
ρ2dρ

∫ π

0
sinϕdϕ

∫ 2π

0

dθ

(2π)
3
2

e−iρr cosϕeiωλf̃(p).

The Cartesian components of these polar coordinates are

p =

 ρ cos θ sinϕ
ρ sin θ sinϕ
ρ cosϕ

 . (229)

The angle summations are elementary leaving a single summation to evaluate (228) for a rota-
tionally symmetric, even f̃(p).

f(λ,x) =
−i√
2π r

∫ ∞

0
ρdρ

(
eiρr − e−iρr) eiωλf̃(ρ)

=
−i√
2π r

∫ ∞

−∞
ρdρ eiρreiωλf̃(ρ)

= − 1√
2π r

∂

∂r

∫ ∞

−∞
dρ eiρreiωλf̃(ρ)

(230)

from a change of summation variable ρ→ −ρ in the second term and the dominated convergence
theorem.

Nonrelativistically supported Gaussian functions provide an elementary example. Gaussian,
minimum uncertainty functions centered of zero momentum,

f̃(p) := e−σ2p2
, (231)

are even and rotationally symmetric with a length parameter σ that characterizes the breadth
of the spatial support of (228). Gaussian functions achieve the Heisenberg uncertainty lower
bound on location and momentum support spread. If the support of f̃(p) is over nonrelativistic
ρ, p2 = ρ2 ≪ λ−2

c within the dominant support, then

ω ≈ λ−1
c +

1

2
λcρ

2 − 1

8
λ3cρ

4 . . .

from Taylor series expansion of (13). If λ is sufficiently small, then

exp(iωλ) ≈ exp(iλ−1
c λ+

i

2
λcρ

2λ).
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λ is sufficiently small if λ3cρ
4λ≪ 16π within the dominant support of f̃(p), and this is implied

if
λ≪ 16πλc

since σ2 ≫ λ2c for nonrelativistically supported f̃(p) and σρ < κ for κ ∼ 10 dependent on the
confidence in likelihood. For nonrelativistically supported f̃(p) and sufficiently small λ, (230)
is approximated with ω ≈ λ−1

c + 1
2λcρ

2,

f(λ,x) ≈ − ei
λ

λc

√
2π r

∂

∂r

∫ ∞

−∞
dρ eiρre−(σ2−i 1

2
λcλ)ρ2

= − ei
λ

λc

√
2 r (σ2 − i12λcλ)

1
2

∂

∂r
e−r2/(4(σ2−i 1

2
λcλ))

=
ei

λ
λc

(2(σ2 − i12λcλ))
3
2

e−r2/(4(σ2−i 1
2
λcλ))

from the Gaussian summation (170).
A family of even, rotationally symmetric f̃(p) with φ̃2 ∈ HP and relativistic time transla-

tions that remain in family are

f̃(p) = h̃(ρ2)e−2σ2λ−2
c (λcω−1)

for continuously differentable, polynomially bounded growth functions h̃(ρ2). The time trans-
lates have complex spread parameters σ2 and a phase shift independent of p.

e−iωλf̃(p) = h̃(ρ2)e−(2σ2λ−2
c +iλ−1

c λ)(λcω−1)e−iλ−1
c λ.

If h̃(ρ2) ≈ 1 for λcρ≪ 1, these f̃(p) approximate the Gaussian functions (231)

f̃(p) ≈ e−σ2ρ2

if momentum support is nonrelativistic, λcρ ≪ 1 within the dominant support of f̃(p). The
approximation derives from (13),

λcω ≈ 1 +
(λcρ)

2

2
.

In very relatistic instances ω ≈ ρ and f(λ,x) becomes a more Lorentzian than Gaussian function
over r = ∥x||. Without approximation of the Hamiltonian, estimates for f(λ,x) (230) apply
for all λ.
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6.11 Center-of-momentum reference frames

For any energy-momentum vector q with q2 > 0 and momentum q, Poincaré invariance of
the scalar product can be exploited to transform to a primed inertial reference frame with
q transformed to q′ = 0. In particular, Poincaré invariance of the scalar product can be
exploited to transform to the center-of-momentum frame for n particles, a reference frame with
p1 +p2 + . . .pn = 0. Two particles of energy-momenta q1, q2 with q21 = q22 = m2 and momenta
q1,q2 illustrate the result. There is a Lorentz boost to a reference frame with q′

2 = −q′
1.

The Poincaré transformation to a center-of-momentum frame is developed in this appendix.
A zero momentum is unaffected by a coordinate frame translation. Following a boost with
translation, the center-of-mass of n particles may be colocated with the origin of coordinates
in a center-of-momentum frame.

The transformation from the original energy-momentum coordinates to coordinates in the
primed reference frame is

p′
j = Λpj

with Λ a Lorentz transform. The center of momentum frame is defined by this linear transfor-
mation Λ that sets

Λq1 = (ω(q′
1),q

′
1) and Λq2 = (ω(q′

1),−q′
1).

Both q1 and q2 are on mass shells defined by finite rest mass m. The transformation Λ is a
proper (det(Λ)=1), orthochronous (Λ00 > 0) Lorentz transformation

Λ := B(β)R

consisting of a rotation R and a boost B(β). To evaluate Λ, designate the center-of-momentum
for q1, q2 by

q := q1 + q2 =


ω(q1) + ω(q2)
ρ cos θ sinϕ
ρ sin θ sinϕ
ρ cosϕ

 (232)

in polar coordinates with the momentum q := (qx,qy,qz),

ρ := ∥q∥ = ∥q1 + q2∥,

and

cosϕ =
qz
ρ
, sinϕ =

√
q2
x + q2

y

ρ

cos θ =
qx√

q2
x + q2

y

, sin θ =
qy√

q2
x + q2

y

(233)
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with quadrants selected for θ, ϕ to correspond with the signs of qx,qy,qz. θ ∈ {0, 2π} is the
anticlockwise angle of q from the x-axis in the x-y plane, and ϕ ∈ {0, π} is the angle of q from
the z-axis in the plane containing q and the z-axis. The rotation R aligns the momentum q
with the primed z-axis,

ω(q1)+ω(q2)
0
0
ρ

 = Rq :=


1 0 0 0
0 sin θ − cos θ 0
0 cos θ cosϕ sin θ cosϕ − sinϕ
0 cos θ sinϕ sin θ sinϕ cosϕ




ω(q1)+ω(q2)
ρ cos θ sinϕ
ρ sin θ sinϕ
ρ cosϕ


and the boost B(β) zeros the momentum.


ω(q′

1) + ω(q′
2)

0
0
0

 =


γ(β) 0 0 −β

0 1 0 0

0 0 1 0

−β 0 0 γ(β)




ω(q1)+ω(q2)
0
0
ρ



with
β :=

ρ√
(ω(q1) + ω(q2))2 − ρ2

and γ(β) =
√

1 + β2.
The transformation to the center-of-momentum frame determined by q1 and q2 is the

Lorentz transform Λ := B(β)R.


ω(q′

1) + ω(q′
2)

0
0
0

 =


γ(β) −β qx

ρ −β qy

ρ −β qz

ρ

0
qy

ρxy
− qx

ρxy
0

0 qxqz

ρxyρ
qyqz

ρxyρ
−ρxy

ρ

−β γ(β)qx

ρ γ(β)
qy

ρ γ(β)qz

ρ




ω(q1) + ω(q2)
qx
qy
qz

 (234)

with ρxy :=
√
q2
x + q2

y.

The inverse transformation Λ−1 is

Λ−1 = (B(β)R)−1 = RTB(−β) = RTB(−β)T = (B(−β)R)T
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or

Λ−1 =


γ(β) 0 0 β

β qx

ρ
qy

ρxy

qxqz

ρxyρ
γ(β)qx

ρ

β
qy

ρ − qx

ρxy

qyqz

ρxyρ
γ(β)

qy

ρ

β qz

ρ 0 −ρxy

ρ γ(β)qz

ρ

 .

6.12 Two body classical trajectories

In this appendix, notation is established and results for two body trajectories from classical
mechanics are collected.

Nonrelativistic two body problems provide explicit examples of classical trajectories uj(λ).
The motion of two classical bodies interacting by a scalar pair potential is executed within
a plane. A pair potential depends solely on the body separation and constant properties of
the bodies. The location of bodies in a plane at each time λ is specified by Cartesian spatial
coordinates,

uj :=

 rj cos θj
rj sin θj

0

 (235)

with rj := ∥uj∥ the Euclidean length. Notation is abbreviated, uj = uj(λ) and similarly for
rj , θj .

The Lagrangian for a two body problem in the notation of this note is

L =
1

2
m1c

2u̇2
1 +

1

2
m2c

2u̇2
2 − V (∥u1 − u2∥)

with V the pair potential. The separation of the two bodies is

us = u1 − u2.

In a reference frame with the center-of-mass concident with the origin of coordinates,

m1u1 +m2u2 = 0.

The solutions for ui given the separation us in the center-of-mass coordinate frame are

u1 =
m2us

m1 +m2
, u2 = −

m1us
m1 +m2

.

Substitution results in a single body Lagrangian for us,

L =
1

2
µc2u̇2

s − V (∥us∥),
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with µ denoted the reduced mass.

µ =
m1m2

m1 +m2
.

This results in Newton’s equation of motion for the separation,

µc2üs = −
∂V

∂us
(236)

with
∂V

∂us
= ∇usV

a gradient vector. For equal masses in the center-of-mass reference frame,

µ =
m

2
, u2 = −u1

and with a −g/r pair potential, V = −gmc2/∥us∥, substitution of 2∥u1∥ = ∥us∥ for the
separation results in equation of motion

ü1 = −
g

4

u1

∥u1∥3
. (237)

The interaction is characterized by the length g. For gravity, g = Gm2/mc2 and for electrostat-
ics g = Ke2/mc2. For a mass of one a.m.u. and an elementary charge of one, g = 1.23× 10−53

m for gravity and g = 1.54× 10−18 m for electrostatics.
With

L := u2
1θ̇1,

the relationships of Cartesian and radial coordinates for two equal mass bodies m = m1 = m2

in the center-of-mass reference frame (u2 = −u1) include

u2
j = r2j

u̇j · uj = ṙjrj

u̇2
j = ṙ2j +

L2

r2j
.

(238)

The trajectory u1 in the center-of-mass reference frame for the pair of equal mass bodies
interacting via a −g/r pair potential are conveniently parametrized by θ := θ1 from (235). A
solution to Kepler’s problem is

r1 =
L2/4g

1− ϵr cos θ
and

λ(θ) =
1

L

∫ θ

θ0

dϕ r1(ϕ)
2
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with λ(θ0) = 0 and
ϵr :=

√
1 + 32e1L2/g2.

For e1 > 0, the solution is unbound and diverges when ϵr cos θ = 1. For these unbound
trajectories, θ is constrained to the interval (β, 2π−β) with β = cos−1(ϵ−1

r ). Bound states have
e1 ≤ 0 and

e1 ≥ −
g2

32L2
.

e1 = −g2/32L2 are the circular orbits. For the circular orbits of −g/r pair potentials,

4L2 = gr1.

6.13 Nonrelativistic energy approximations

In this appendix, nonrelativistic approximations to the Hamiltonian (92) are developed.
A nonrelativistic approximation of the energies ωk from (13) derives from the Taylor theorem

polynomial approximation for momenta pk near qk. To second order in pk − qk,

ωk ≈ ω(qk) +
qk · (pk − qk)

ω(qk)
+

(pk − qk)
2

2ω(qk)
− (qk · (pk − qk))

2

2ω(qk)3

and the Cauchy-Schwarz-Bunyakovski inequality provides that

(qk · (pk − qk))
2 ≤ q2

k (pk − qk)
2.

For nonrelativistic velocities
q2
k ≪ ω(qk)

2

and then
(qk · (pk − qk))

2

2ω(qk)3
≪ (pk − qk)

2

2ω(qk)
.

This justifies neglect of the last term from the Taylor series in (239) if the support of state
describing functions excludes relativistic momenta, if, for example, (144) of section 4.4 applies.
The resulting nonrelativistic approximation for ωk is

ωk ≈ ω(qk) +
qk · (pk − qk)

ω(qk)
+

(pk − qk)
2

2ω(qk)
. (239)

The approximation applies for nonrelativistically supported state describing functions. If qk
is a representative for the support of a state describing function and p is any point from the
nonrelativistic dominant support, then ∥pk − qk∥ ≪ λ−1

c ≤ ω(qk). (239) provides a convenient
approximation for the Hamiltonian (92) applied in each n-argument subspace,

H =
∑
k

ωk.
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If qk and pk are both nonrelativistic, ∥qk∥, ∥pk∥ ≪ λ−1
c , then both correction terms to ω(qk)

in (239) are second order in small quantities. Neglect of the term proportional to (p2 − qk)
2

in (142) results in a convenient linear in p2 approximation for the energy. However, with
nonrelativistic momenta, this approximation is also second order in small quantities and neglect
of the quadratic term is not justified. Neglect of the second correction requires that (pk−qk)2 ≪
|qk · (pk − qk)| in addition to nonrelativistic momenta.

A nonrelativistic approximation (109) of the energies ω(qk) also derives from a Taylor
theorem polynomial approximation if ∥qk∥ ≪ ω(qk).

ω(qk) ≈
1

λc
+
λcq

2
k

2

=
1

λc

(
1 +

u̇k(λ)
2

2

)
from the nonrelativistic relation between momentum and velocity (109) and with the reduced
Compton wavelength (14). This approximation applies for nonrelativistic velocities of the
corresponding classical trajectories uk(λ) in appropriate reference frames.

The center-of-mass and the internal motion of bodies decouple in nonrelativistic instances.
For two argument functions (134) in section 4.4, the assumption that decouples the motions
is that the momentum of the center-of-momentum p′

3 = p3 + p4 from (134) in section 4.4 is
nonrelativistic. Then, from (109),

p′2
3 ≪

1

λ2c
< ω(p′

3)
2.

In these nonrelativistic instances, Taylor expansion results in

ω3 + ω4 = ω(
p′
3+p′

4
2 ) + ω(

p′
3−p′

4
2 )

≈ 2ω(12p
′
4) +

p′2
3

4ω(12p
′
4)

≈ 2ω(12p
′
4) +

1
4λcp

′2
3

using (13), (109) and (239). In this nonrelativistic approximation, the argument of the conserva-
tion of energy delta function becomes independent of p′

1 and p′
3 as a consequence of momentum

conservation, p′
1 = p′

3.

ω1 + ω2 − ω3 − ω4 ≈ 2ω(12p
′
2) +

1
4λcp

′2
1 − 2ω(12p

′
4)− 1

4λcp
′2
3

= 2ω(12p
′
2)− 2ω(12p

′
4).

(240)
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This approximation appears in the energy conservation delta function independently of the
propagation interval λ, unlike the generation of time translation with λ multiplying any error
in the Hamiltonian.

6.14 Essentially local functions

The physical understanding of state descriptions in these notes uses that there are functions
arbitrarily dominantly supported within finite volumes among the anti-local functions P(R4).
These functions are essentially localized. There are no strictly localized functions in P(R4),
[33].

H. Reeh and S. Schlieder [45, 53] demonstrated that the operation (a2 −∆)
1
2 over R3 has

the anti-local property: if both f and (a2 −∆)
1
2 f vanish within some finite volume of R3, then

f ∈ L2(R3) is identically zero. φ ∈ P(R4) has a Fourier transform of the form

φ̃(p) = (p0 + ω) g̃(p)

with g ∈ S(R4) and ω = (λ−2
c + p2)

1
2 from (13). Then

φ(x) = −idg(x)
dx0

+ (λ−2
c −∆)

1
2 g(x)

and φ vanishing in a finite volume provides that both ġ and (λ−2
c −∆)

1
2 g vanish in the volume

[33]. Anti-locality can be motivated by the observation that if φ(x) was supported solely in
a finite volume of x ∈ R3, then the Fourier transform would be an entire analytic function of
p ∈ R3, but both p0 g̃(p) and ω g̃(p) can not both be entire due to the cut line of ω = (λ−2

c +p2)
1
2 .

One example suffices to demonstrate the existence of essentially localized functions within
P(R4). The selected example φ has a Fourier transform

φ̃(p) = (p0 + ω)g̃(p0) exp(−αp2)

with g ∈ S(R). Then

φ(x) =

∫
dp

(2π)
3
2

(
−ig′(x0) + ωg(x0)

)
exp(−αp2 − ip · x) (241)

from the properties (18) of the Fourier transform (16).
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From the Gaussian summation (170) from section 4.4.4,

∫
dp

(2π)
3
2

exp(−αp2 − ip · x) =

∫ ∞

0

ρ2dρ

(2π)
3
2

∫ 2π

0
dθ

∫ π/2

−π/2
cosϕdϕ exp(−αρ2 − iρr sinϕ)

=

∫ ∞

0

ρ2dρ

(2π)
1
2

exp(−αρ2)
(
e−iρr − eiρr

)
−iρr

=
i

r

∫ ∞

−∞

ρdρ

(2π)
1
2

exp(−αρ2 − iρr)

= −1

r

d

dr

∫ ∞

−∞

dρ

(2π)
1
2

exp(−αρ2 − iρr)

= −1

r

d

dr

1√
2α

exp

(
− r

2

4α

)
= (2α)− 3

2 exp

(
− r

2

4α

)
using the spherical symmetry, change to polar coordinates with z-axis aligned with x = (0, 0, r),

p = (ρ cos θ cosϕ, ρ sin θ cosϕ, ρ sinϕ)

and ρ, r are the positive roots of the Euclidean lengths, ρ2 = p2 and r2 = x2, respectively. The
change of variable ρ′ := −ρ in the second term in the third line and simplification results in
the fourth line. In this case, the summation is the product of three one dimensional Gaussian
summations (170) from section 4.4.4 but the development in polar coordinates is preparation
for a second required summation. Similarly,∣∣∣∣∣

∫
dp

(2π)
3
2

ω exp(−αp2 − ip · x)

∣∣∣∣∣ =

∣∣∣∣∣ ir
∫ ∞

−∞

ρdρ

(2π)
1
2

ω exp(−αρ2 − iρr)

∣∣∣∣∣
<

1

r

∫ ∞

−∞

|ρ|dρ
(2π)

1
2

ω exp(−αρ2)

=
a

r

with the indicated constant a finite and independent of r. While apparently a loose upper
bound, this bound suffices to demonstrate that the dominant support of φ(x) from (241) lies
within finite spheres: the likelihood per unit volume decreases as 1/r with expanding distance
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r from the center of support. φ(x) is finite for r = 0 and

φ(x) <
|g′(x0)|
(2α)

3
2

exp

(
− r

2

4α

)
+ |g(x0)|

a

r

for every g ∈ S(R). Translations, dilations and any spherically symmetric f̃(p) ∈ S(R3) with
essentially localized support substituted for the Gaussian function also have dominant support
within a finite volume.

6.15 Example relative states

An example measurement process is illustrated in this appendix. The example illustrates prop-
erties of projection operators, unitary time translations, and relative states discussed in [11]
and appendix 6.2.7. The example is a simplification generally consistent with the constructions
but not derived from the state representations constructed in section 3.

Consider an observer with three orthogonal states of interest interacting with an observed
system characterized by two orthogonal states. The three states of the observer are designated
“no observation,” “observed system state 1” and “observed system state 2.” Designate the two
system states as “up” and “down” regardless of whether they are states characterized by a spin.
The two states could describe any system quantity characterized by two possibilities: located
within detector A or B; Schrödinger’s live or dead cat, spin up or down, and so forth. Then,
there are six subspaces of states of interest within the Hilbert space if the observer is described
independently of the system, for example, when the observer is distantly space-like separated
from the system and not entangled. Designate these states using “no” for “no observation,”
“sup” for “observed system state 1” and “sdn” for “observed system state 2” with “up” and
“dn” for the two system states. For an ideal measurement, |sdn, up⟩ and |sup,dn⟩ never appear
in nature and these states are not coupled to the states of interest. These two states need not
be considered further. This leaves four states of interest.

|no, up⟩ :=


1
0
0
0

 |no,dn⟩ :=


0
0
1
0

 |sup,up⟩ :=


0
1
0
0

 |sdn,dn⟩ :=


0
0
0
1

. (242)

Presumably, these states represent orthogonal subspaces of states |f⟩ labeled by particular
function sequences f , and their interaction is described by one of the VEV constructed in section
3.4. The observation is conceived as a scattering event: initially independently described system
and observer are spatially distant, they approach and strongly interact, and then entangled
system with observer states propagate away and cease to interact. An effective Hamiltonian is
described below. The Hamiltonian is selected for simplicity with properties similar to the −g/r
potentials that describe long range, non-relativistic interactions in the constructions.
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The evolution of an initial state described by the four orthogonal states (242) is described

|v(λ)⟩ := U(λ)|vo⟩

with a unitary, 4×4 block diagonal

U(λ) =

(
U2(λ) 0
0 U2(λ)

)
using 2×2 unitary

U2(λ) =

(
eiη cos θ −eiϕ−iρ sin θ
eiρ sin θ eiϕ−iη cos θ

)
.

The four parameters, θ, ϕ, η, ρ, are real. To simplify this example, the two unitary block sub-
matrices are set equal with η = ρ = ϕ = 0 and

θ(λ) :=
π

2

1

I∞

∫ λ

−∞
ds

a2ϵ

(a2 + s2)
1
2
+ϵ
.

The normalization I∞ is a beta function valid if ϵ > 0.

I∞ :=

∫ ∞

−∞
ds

a2ϵ

(a2 + s2)
1
2
+ϵ

=
Γ(12)Γ(ϵ)

Γ(12 + ϵ)
.

θ(λ) is absolutely continuous with θ(−∞) = 0 and θ(∞) = π/2.
The Hamiltonian generates time translation.

H(λ)v(λ) := i
dv(λ)

dλ

= iU̇(λ)vo

= iU̇(λ)U−1(λ)v(λ)

= iU̇(λ)U †(λ)v(λ)

in units of inverse length. For the 2×2 blocks of the Hamiltonian,

H2(λ) = iU̇2(λ)U
†
2(λ)

=

(
−iθ̇ sin θ −iθ̇ cos θ
iθ̇ cos θ −iθ̇ sin θ

)(
cos θ sin θ
− sin θ cos θ

)
=

(
0 −iθ̇(λ)

iθ̇(λ) 0

)
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with

θ̇(λ) =
π

2

1

I∞

a2ϵ

(a2 + λ2)
1
2
+ϵ
.

The Hamiltonian is Hermitian as a consequence of the unitarity of U2(λ). The evolution of the
initial state vo occurs most rapidly near λ = 0. The parameter a is a length characterizing the
effective closest approach of observed to observer.

An initial state

|vo⟩ =


α
0
β
0


with α, β ∈ C and normalization |α|2 + |β|2 = 1 evolves to

|v(λ)⟩ = U(λ)|vo⟩ =


α cos θ(λ)
α sin θ(λ)
β cos θ(λ)
β sin θ(λ)

 (243)

with cos θ(−∞) = 1, sin θ(−∞) = 0 and cos θ(∞) = 0, sin θ(∞) = 1. Initially, no observation
has occured and as time evolves, the system and observer approach and the likelihood of state
transitions increases. Eventually, the observer and system separate and likelihoods stabilize
with the relevant observer states entangled with system states.

The selected form for U(λ) couples the observer with the system and lacks any evolution
of “up” and “dn” system states, e.g., evolution of live into dead cats. A more general unitary
transformation implements changes to the likelihoods of live or dead with time, for example,
the composition of a rotation of vo = (1, 0, 0, 0) to (cosϑ, 0, sinϑ, 0) with U(λ). If the transition
is internal to the system, more general effective interactions apply than if the transition is due
to interaction with the observer. In the case with the transition due to interaction with the
observer, ϑ(λ) would have similar properties to θ(λ) except the transition need not be from one
certain extreme to the other. ϑ(λ) is constrained by physical considerations, e.g., dead cats do
not become live again. For this example composition, the Hamiltonian is time-dependent,

H(λ) =


0 −iθ̇ −iϑ̇ cos2 θ −iϑ̇ cos θ sin θ
iθ̇ 0 −iϑ̇ cos θ sin θ −iϑ̇ sin2 θ

iϑ̇ cos2 θ iϑ̇ cos θ sin θ 0 −iθ̇
iϑ̇ cos θ sin θ iϑ̇ sin2 θ iθ̇ 0


and reproduces the result (243) but with α = cosϑ(λ) and β = sinϑ(λ).
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The projections onto the perceived system states are

Pup =


1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 Pdn =


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1


and the projections onto the possible states of the observer are

Eno =


1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0

 Esup =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 Esdn =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

These projections commute, [Exx, Pyy] = 0. This commutation implies the decomposition into
relative states discussed in [11] and appendix 6.2.7. The projections onto perceived system
states, Pyy, commute with time translation, [U(λ), Pyy] = 0, providing that the likelihoods of
the two system states do not vary with time. The projections onto the possibilities for observer
state, Exx, do not commute with time translation and state of the observer evolves with time.
Likelihoods are

up likelihood = E[Pup] = ⟨v(λ)|Pupv(λ)⟩ = |α|2

and
dn likelihood = E[Pdn] = ⟨v(λ)|Pdnv(λ)⟩ = |β|2

both independently of λ in the first example. The likelihoods of the observer having the
indicated perceived history of observations are

likelihood of no observation = E[Eno] = ⟨v(λ)|Enov(λ)⟩ = cos2 θ(λ)
λ→∞−−−→ 0

likelihood that up observed = E[Esup] = ⟨v(λ)|Esupv(λ)⟩ = |α|2 sin2 θ(λ)
λ→∞−−−→ |α|2

likelihood that dn observed = E[Esdn] = ⟨v(λ)|Esdnv(λ)⟩ = |β|2 sin2 θ(λ)
λ→∞−−−→ |β|2.

From (195) and for the state density operator ρ = |v(λ)⟩⟨v(λ)| for the pure state |v(λ)⟩, the
relative state density operators,

ρxx :=
ExxρExx
E[Exx]

,
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are

ρno =


|α|2 0 αβ 0
0 0 0 0
αβ 0 |β|2 0
0 0 0 0



ρsup =


0 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0



ρsdn =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

 .

These are unit trace matrices operating in orthogonal subspaces, that is, with ranges in the
null spaces of the other state density operators. ρxxρxx

′
= 0 unless xx’=xx.
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1905, p. 891.

16. A. Einstein, B. Podolsky and N. Rosen, “Can Quantum-Mechanical Description of Phys-
ical Reality be Considered Complete?,” Physical Review, Vol. 47(10), 1935, p. 777.

17. Richard Feynman, “Simulating Physics with Computers,” International Journal of The-
oretical Physics, vol. 21, 1982, p. 467.

18. R.P. Feynman, R.B. Leighton, and M. Sands, The Feynman Lectures on Physics, Volume
III, Reading, MA: Addison-Wesley Publishing Co., 1965.

19. I.M. Gel’fand, and G.E. Shilov, Generalized Functions, Vol. 1, trans. E. Salatan, New
York, NY: Academic Press, 1964.

20. I.M. Gel’fand, and G.E. Shilov, Generalized Functions, Vol. 2, trans. by M.D. Friedman,
A. Feinstein, and C.P. Peltzer, New York, NY: Academic Press, 1968.

21. I.M. Gel’fand, and N.Ya. Vilenkin, Generalized Functions, Vol. 4, trans. A. Feinstein, New
York, NY: Academic Press, 1964.



6 APPENDICES 190

22. I.M. Gel’fand, M.I. Graev, and N.Ya. Vilenkin, Generalized Functions, Vol. 5, trans. E. Sale-
tan, New York, NY: Academic Press, 1966.

23. F. Gross, Relativistic Quantum Mechanics and Field Theory, New York, NY: Wiley-
Interscience Publication, 1993.

24. B. C. Hall, Quantum Theory for Mathematicians, New York: Springer, 2013.

25. H. Georgi, “Unparticle Physics,” May 2007, arXiv:hep-ph/0703260.

26. G.C. Hegerfeldt, “Prime Field Decompositions and Infinitely Divisible States on Borchers’
Tensor Algebra,” Commun. Math. Phys., Vol. 45, 1975, p. 137.

27. R.A. Horn, and C.R. Johnson, Matrix Analysis, Cambridge: Cambridge University Press,
1985.

28. R.A. Horn, and C.R. Johnson, Topics in Matrix Analysis, Cambridge: Cambridge Uni-
versity Press, 1991.

29. J.D. Jackson, Classical Electrodynamics, New York, NY: John Wiley and Sons, 1962.

30. A. Jaffe, “Constructive Quantum Field Theory,” in Mathematical Physics 2000, ed. A.
S. Fokas, London: Imperial College Press, 2000.

31. G.E. Johnson, “Consistent Descriptions of Quantum Fields,” Reports on Mathematical
Physics, Vol. 80(2), 2017, p. 193.

32. G.E. Johnson, “Classical approximations of relativistic quantum physics,” April 2016,
arXiv:quant-ph/1604.07654.

33. G.E. Johnson, “Introduction to quantum field theory exhibiting interaction,” Feb. 2015,
arXiv:math-ph/1502.07727.

34. G.E. Johnson, “Measurement and self-adjoint operators,” May 2014, arXiv:quant-ph/-
1405.7224.

35. G.E. Johnson, “Fields and Quantum Mechanics,” Dec. 2013, arXiv:math-ph/1312.2608.

36. G.E. Johnson, “Massless Particles in QFT from Algebras without Involution,” May 2012,
arXiv:math-ph/1205.4323.

37. G.E. Johnson, “Algebras without Involution and Quantum Field Theories,” March 2012,
arXiv:math-ph/1203.2705.

38. G.E. Johnson, “Are strings the aether of our time?” June 2015, arXiv:quant-ph/1506-
.05361v1.



6 APPENDICES 191

39. G.E. Johnson, “Interacting quantum fields,” Rev. Math. Phys., Vol. 11, 1999, p. 881 and
errata, Rev. Math. Phys., Vol. 12, 2000, p. 687.

40. R.V. Kadison and J.R. Ringrose, Fundamentals of the Theory of Operator Algebras, Vol-
ume I: Elementary Theory, and Volume II: Advanced Theory, Graduate Studies in Math-
ematics, Vol. 15: American Mathematical Society, 1997.

41. G. Lechner, “Deformations of quantum field theories and integrable models,” Commun.
Math. Phys. Vol. 312, 2012, p. 265.

42. A. Messiah, Quantum Mechanics, Vol. I, New York, NY: John Wiley and Sons, 1968.

43. T.D. Newton and E.P. Wigner, “Localized States for Elementary Systems,” Rev. Modern
Phys., Vol. 21, 1949, p. 400.

44. M.F. Pusey, J. Barrett, and T. Rudolph, “On the reality of the quantum state,” Nature
Physics, Vol. 8, 2012, p. 475.

45. H. Reeh and S. Schlieder, “Bemerkungen zur Unitäräquivalenz von Lorentzinvarianten
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