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1 Introduction

The constructed, fully quantum mechanical realizations of relativistic quantum physics [10,
11, 12, 13] exhibit bound states of the elementary particles. In these realizations, interaction
is expressed in the vacuum expectation values (VEV) of fields but not in the Hamiltonians.
Appropriate states evolve in correspondence with classical physics descriptions, but canonical
quantization’s correspondence of densely defined Hermitian operators with classical dynamical
variables is only approximated. The constructed Hamiltonians satisfy the requirements of rel-
ativity but have only continuous spectra. As a consequence, description of quantized bound
states is an evident question for these constructions. This note demonstrates that the con-
structed realizations of relativistic quantum physics include bound states. There are multiple
argument state describing functions with centers-of-momentum described as free particles and
with localized descriptions for internals. In a selected reference frame, the internals evolve pe-
riodically with time like eigenfunctions of a Hamiltonian. These bound states correspond with
classical descriptions of composite particles, similarly to the correspondence of the constructed
elementary particles with classically described particles [10].

If a classical correspondence applies, then a bound state consists of two identifiable bod-
ies stably coupled together by an attractive potential. More generally, a quantum mechanical
bound state consists of a description for the center-of-momentum as a free particle plus a lo-
calized description for the internals. Linear combinations of eigenfunctions from eigenspaces
within the continuous spectrum of a Hermitian Hilbert space operator describe bound states.
This contrasts with nonrelativistic quantum mechanics that describes bound states as eigen-
functions from the discrete spectra of selected Hamiltonian operators. In both instances, the
descriptions of internals have localized support. In the constructions, a description of a bound
state follows for every: continuous, bounded, absolutely summable (L1) function over two mo-
menta; and rest mass mb < 2m. Descriptions of nature are included within the constructions,
but are not determined by them.

The constructions [10] describe the evolution of Poincaré invariant likelihoods. These likeli-
hoods include the relative frequency of observing states corresponding to classical descriptions.
In the constructions, only states with evident classical correspondences, those with localized
and isolated support, are interpreted as corresponding to classical particles. Other consid-
erations, beyond the general physical requirements captured in axioms A.1-7 [10], determine
the classical correspondences. Analogously to the many distinct possibilities for bound states
within L2 Hilbert space in nonrelativistic quantum mechanics, the Hilbert spaces HP include
many descriptions of bound states. While scattering amplitudes are determined by the con-
structed VEV, significiant freedom remains to specify other classical correspondences. These
classical correspondences include the finite period transition amplitudes for particle-like states,
and bound states. It is anticipated that this dynamical discriminant corresponds with selection
of classically described interactions. In nonrelativistic quantum mechanics, particular bound
states follow from a choice of Hamiltonian and other classical correspondences are similarly
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determined [5, 15]. However, the correspondence of construction and classical Hamiltonian is
obscured by the exhibition of multiple, distinct classical correspondences in the differing dy-
namical regimes of one construction: the effective potential for scattering amplitudes is short
range and nuclear-like while the evolution of particle-like states includes long range, gravity-like
forces. The development in this note establishes the existence of bound states in RQP, but like
other classical correspondences, additional considerations identify the particular descriptions of
nature.

2 Preliminaries

One example construction from [10] is applied to the demonstration. This selected construction
has:

1. one neutral elementary particle of finite mass m

2. the VEV (5) of a single, scalar quantum field

3. bound states of two elementary particles described by functions with point support in
time (1) in the two-argument subspace of HP .

Here, bound states of two elementary particles are described by functions over two spacetime
arguments with point support in time. These functions φ̃2.ψ̃2 over energy-momenta p1, p2 derive
from functions f̃2.g̃2 over momenta p1,p2,

φ̃2(p1, p2) := (p10 + ω1)(p20 + ω2)f̃2(p1,p2)

ψ̃2(p1, p2) := (p10 + ω1)(p20 + ω2)g̃2(p1,p2).
(1)

This description is in the Fourier transform domain representation in the two-argument subspace
of the constructed Hilbert space HP from [10]. φ̃2(p1, p2) ∈ HP if f̃2 ∈ S(R6), a tempered
function. The arguments of φ̃2(p1, p2) are wavenumbers pν ∈ R4, ν = 1, 2. The wavenumber
ω = ω(p) is proportional to an energy on the mass m shell.

ωj := ω(pj)

:=
√
λ−2
c + p2

j

(2)

with

λc :=
ℏ
mc

(3)

the reduced Compton wavelength for the finite mass m in the construction of the single, neutral
scalar field Φ(xj). Spacetime vectors x := (x0,x) with x0 = ct and spatial vectors x := x, y, z ∈
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R3 are lengths, energy-momenta are designated p := (p0,p) with p = px.py, pz ∈ R3, momentum
vectors P = ℏp and ℏ is Planck’s constant h divided by 2π. c is the speed of light. Energies
are E := ℏcp0. Multiple arguments are denoted (p)n := p1, p2, . . . pn. Functions fn((x)n) in the
basis function spaces P underlying HP have Fourier transforms. f̃n((p)n) denotes the Fourier
transform of fn((x)n) with the four dimensional spacetime Fourier transform adopted here and
in [10] the evident multiple argument extension of

ψ̃(p) :=

∫
dx

(2π)2
e−ipxψ(x) (4)

with the Lorentz invariants px := p0ct− p · x and spacetime volume element dx := dx0dx with
dx = dxdydz. Whether x designates a Cartesian spatial component of x or a spacetime Lorentz
vector is resolved by context. The inverse Fourier transforms of functions over energy-momenta
describe the spacetime support of states.

The construction of interest has a single species of massm neutral scalar elementary particle
corresponding with a single scalar field Φ(x). The cluster expansion of the four-point VEV

W̃2,2((p)4) displays the VEV as the sum of a free field contribution F W̃2,2((p)4) and a connected

contribution CW̃2,2((p)4). The connected contribution introduces interaction. In this scalar
field case of interest, the nonzero four-point VEV are

⟨Φ̃(p2)Φ̃(p1)Ω|Φ̃(p3)Φ̃(p4)Ω⟩ = F W̃2,2((p)4) +
CW̃2,2((p)4) (5)

with

CW̃2,2((p)4) := c4 δ(p1+p2+p3+p4)

4∏
j=1

δ(p2j − λ−2
c )

F W̃2,2((p)4) := (δ(p1 + p3)δ(p2 + p4) + δ(p1 + p4)δ(p2 + p3))
4∏

j=3

δ(p2j − λ−2
c )

and

δ(p2j − λ−2
c ) =

δ(pj0 − ωj)

2ωj
+
δ(pj0 + ωj)

2ωj
.

The support of the VEV is limited to mass m shells and the zeros of functions φ̃2, ψ̃2 ∈ HP
limit the support of states to positive energy mass shells. For functions (1) from P(R8),

δ(p21 − λ−2
c )δ(p22 − λ−2

c )φ̃2(p1, p2) = δ(p10 − ω1)δ(p20 − ω2)f̃2(p1,p2) (6)

from (pj0 + ωj) δ(pj0 − ωj) = 2ωjδ(pj0 − ωj) and (pj0 + ωj) δ(pj0 + ωj) = 0. Similarly,

δ(p21 − λ−2
c )δ(p22 − λ−2

c )φ̃∗
2(p1, p2) = δ(p10 + ω1)δ(p20 + ω2)f̃2(−p2,−p1)
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given the ∗-dual sequence φ∗ ∈ S,

φ̃∗
n((p)n) := φ̃n(−pn, . . .− p1), (7)

in this scalar field case. The ∗-dual includes an argument order reversal, argument reflections
and z denotes the complex conjugate of z ∈ C. For the single, scalar field construction of
interest below, the unitary temporal translation operator is

U(λ)φ̃2((p)2) = e−i(p0,1+p0,2)λφ̃2((p)2)

= e−i(ω1+ω2)λφ̃2((p)2)
(8)

in the Fourier transform domain representation of functions in the two-argument subspace of
HP . From (2), ωj designates ω(pj). ω(pj) is the Hamiltonian for each argument pj in this
construction with a single mass m elementary particle. From (4), the temporal translation of
the description of state, the function, is that a translation of the function by −λ corresponds
to a translation of the fields by λ.

For the VEV (5), the scalar product of two, two-argument functions is denoted

⟨φ2|ψ2⟩ = FW2,2(φ
∗
2 ψ2) +

CW2,2(φ
∗
2 ψ2) (9)

with connected and free field VEV contributions (5). For functions (1), the Fourier transform
of generalized functions as Parseval’s equality and the dual function (7) provide that

CW2,2(φ
∗
2 ψ2) = c4

∫
d(p)4 δ(p1+p2−p3−p4)

4∏
j=1

δ(pj0 − ωj) f̃2(p1,p2) g̃2(p3,p4)

FW2,2(φ
∗
2 ψ2) =

∫
d(p)4 (δ(p1−p3)δ(p2−p4) + δ(p1−p4)δ(p2−p3))

×
4∏

j=3

δ(pj0−ωj) 4ω1ω2 f̃2(p1,p2) g̃2(p3,p4).

This evaluation of the scalar product results after substitution of (5), reflection of p1, p2, appli-
cation of the signed symmetry of the VEV, substitutions for the mass shell Dirac delta functions
δ(p2j − λ−2

c ) and factors (pj0 + ωj) from (6), and with the indicated substitutions from (1). In
appendix 4.1, the generalized functions in this scalar product (9) are evaluated and produce
the Lebesgue summation,

CW2,2(φ
∗
2 ψ2) = c4

∫
d(p)2 sinϕ

′
3dθ

′
3dϕ

′
3

ρ′1ω̂3ω̂4

2ω′
1

f̃2(p1,p2)g̃2(p̂3, p̂4) (10)

for the connected VEV contribution. The values of p4 and ρ3 are determined by energy-
momentum conservation for the on-mass shell Lorentz vectors pj , j = 1, 2, 3, 4, and the primed
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and hat coordinates are defined in appendix 4.1. The Euclidean norms of momentum vectors
are designated

ρ2j := p2
j := pj · pj . (11)

The ω̂j designates ω(p̂j) determined by the constrained momenta p̂j from (51) in appendix 4.1.
ρ′1 = ∥p′

1∥ and ω′
1 = ω(p′

1) with
p′1 = Λp1.

Λ is a (p1+p2)-dependent Lorentz transformation provided in (46) and (47) of appendix 4.1.
The free field contribution to the scalar product also results in a Lebesgue summation

FW2,2(φ
∗
2 ψ2) =

∫
d(p)2 4ω1ω2 f̃2(p1,p2)(g̃2(p1,p2) + g̃2(p2,p1)). (12)

3 Bound states

The description of bound states in the two-argument subspace of HP develops appropri-
ately supported and temporally evolving functions. The temporal evolution of the center-
of-momentum of the bound complex is described as a free particle of mass mb < 2m, and the
temporal evolution of the internals is described as if it were an energy eigenfunction with eigen-
value E. The Hamiltonian for evolution of the combined description of the center-of-momentum
and internals of the bound state is (8), and this evolution will be assumed to be equivalent to
a description of the center-of-momentum as a free particle with a periodic evolution of the in-
ternals in a selected reference frame. The description of the internals is required to be spatially
localized. A demonstration of this equivalence provides that the support of the description of
the center-of-momentum will spread with time consistently with the Heisenberg uncertainty
principle. The support of the description of the bound state remains localized over time.

In this section, it is established that bound states exist in the constructed realizations of
RQP.

3.1 Relativistic description of bound states

In this study limited to the two-argument subspace of HP , bound states are described by
functions φ̃2(p1, p2) of the form (1) with

f̃2(p1,p2) := h̃1(p1 + p2) ũ2(p1,p2). (13)

The internals of the bound state are described by the function ũ2(p1,p2) and h̃1(p1 + p2)
independently describes the center-of-momentum of the bound complex. With relativity, the
evolution of the internal description of a bound state is coupled to the center-of-momentum
description by the Hamiltonian H = ω1 + ω2. This Hamiltonian H does not decompose as a
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sum of functions over p1 + p2 and p1 − p2. In nonrelativistic approximation, this decoupling
occurs,

ω1 + ω2 ≈ 2λ−1
c +

λc
2
(p2

1 + p2
2)

= 2λ−1
c +

λc
4
(p1 + p2)

2 +
λc
4
(p1 − p2)

2

if p2
1 and p2

2 ≪ λ−2
c . In a classical description when relativity is considered, Lorentz-Fitzgerald

contraction of body locations varies with the velocity of the center-of-momentum. Thus, f̃2
includes ũ2(p1,p2) rather than a function solely over p1−p2.

The goal now is to identify functions ũ2 with localized spatial support. The centers-of-
momentum are described by h̃1. This description for a bound state is expressed using the time
translation operator (8) by associating factors with commuting operators and requiring equality
of the two state evolution descriptions. A function ũ2 describes the internals of a bound state
if for every multiplier function h̃1 and all λ ≥ 0,

U(λ)h̃1(p1 + p2) ũ2(p1,p2) =
(
e−iωb(p1+p2)λ h̃1(p1 + p2)

) (
e−iEλ ũ2(p1,p2)

)
= e−i(ωb(p1+p2)+E)λ h̃1(p1 + p2) ũ2(p1,p2)

(14)

with

ωb(p) :=
√
λ−2
b + p2 (15)

similarly to (2) but with

λb =
ℏ
mbc

,

the reduced Compton wavelength (3) for the bound state mass mb < 2m. The energy E
is associated with temporal evolution of the internals in the bound state. The free particle
Hamiltonian ωb describes the evolution of the description of the center-of-momentum, h̃1. The
evolution of an energy eigenfunction, eiEλ, describes the evolution of ũ2. These time translation
operators mutually commute and commute with functions in the Fourier transform domain. A
consequence of cluster decomposition A.6 [10], this description for a bound state applies when
the support of f̃2 in (13) is isolated.

From appendix 4.4, a correspondence with classical particles provides that if the bound
state consists of two elementary particles of mass m, then the rest mass of the bound state is
0 ≤ mb < 2m. The minimal energy that must be added to the bound state to produce two
unbound elementary particles is identified as the binding energy. This binding energy is the
difference of the rest mass energy of two free particles and the bound complex: binding energy
= 2mc2 −mbc

2 > 0. mb < 2m provides that

λ−1
b < 2λ−1

c (16)
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from (3) and (15), and then λc < 2λb. Identifying E as the binding energy sets

E = 2λ−1
c − λ−1

b , (17)

the binding energy in wavenumber units.

2λ−1
c − λ−1

b = (2m−mb)
c

ℏ
.

From (14), a locally supported function ũ2(p1,p2) describes a bound state if

∥|U(λ)φ̃2⟩ − |e−i(ωb(p1+p2)+E)λ φ̃2⟩∥ = 0,

that due to the unitarity of U(λ) is equivalent to

∥|UBφ̃2⟩ − |φ̃2⟩∥ = 0. (18)

The equivalence (18) is in the Hilbert space HP norm with φ̃2(p1, p2) described by (1) and
f̃2(p1,p2) described by (13). The operator

UB = UB(λ,p1,p2, E)

:= ei(ωb(p1+p2)+E)λ U(λ)

= ei(ωb(p1+p2)+E−ω1−ω2)λ

:= e−iHBλ

(19)

after substitution of U(λ) from (8) and with ωb(p) from (15). Noting that UB is a function of
p1+p2 and ω1+ω2, conservation of energy-momentum, ω1+ω2 = ω3+ω4 and p1+p2 = p3+p4,
provides that U∗

B = UB = U−1
B using the scalar product (9). UB is unitary. The generator for

UB is defined by (19) as

HB = HB(p1,p2, E)

:= ω1 + ω2 − ωb(p1 + p2)− E
(20)

using (2) and (15).
The descriptions (1) of two particle bound states with functions

f̃2(p1,p2)

from (13) satisfy

B.1 the center-of-momentum evolves as a free particle and the internal description remains
bound over time: (18) is satisfied for any λ
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B.2 the spatial support of the bound state, the support of the Fourier transform of the function
ũ2 in (13), is localized for all λ

B.3 φ̃2 is approximated arbitrarily well by elements within HP .

A demonstration of B.1-3 establishes that bound states are included in the constructed realiza-
tions of relativistic quantum physics. Localized includes essentially localized: the descriptions
of the constructed states [10, 11] are anti-local functions [19]. B.3 encompases generalized
eigenfunctions similarly to eigenfunctions of momentum and location.

Satisfaction of the equality of time evolutions (18) is implied if

⟨φ2|UBφ2⟩ = ⟨φ2|φ2⟩. (21)

Then, a convenient, sufficient condition to satisfy (18) is the eigenvalue problem

UB φ̃2(p1, p2) := φ̃2(p1, p2). (22)

Satisfaction of (18) derives from (22) and the unitarity of UB.

⟨UBφ2|UBφ2⟩ = ⟨φ2|φ2⟩,

and

0 = 2⟨φ̃2|φ̃2⟩ − 2⟨φ̃2|φ̃2⟩)

= ⟨UBφ̃2|UBφ̃2⟩+ ⟨φ̃2|φ̃2⟩ − ⟨φ̃2|UBφ̃2⟩ − ⟨UBφ̃2|φ̃2⟩

= ∥|UBφ̃2⟩ − |φ̃2⟩∥2.

From Stone’s theorem [8], the unitarily implemented, one parameter group UB(λ) is generated
by a densely defined Hermitian HB. The eigenvalues of UB are exp(iµλ) with µ ∈ R, an
eigenvalue of HB. The bound states φ̃2 are in the null space of HB.

The eigenfunctions of UB group into eigenspaces, subspaces generated by eigenfunctions
with the same eigenvalue. These eigenspaces include sets of plane waves, generalized functions
with point support on pairs of momenta p1,p2 ∈ R6, such that

HB(p1,p2) = µ.

A function
ũ2(p1,p2) := δ(HB(p1,p2)− µ)ψ̃u,2(p1,p2) (23)

is an eigenfunction of UB from (19) with eigenvalue exp(−iµλ). If ũ2(p1,p2) is such an eigen-
function, then h̃1(p1 + p2)ũ2(p1,p2) is also an eigenfunction with eigenvalue exp(−iµλ). The
commutation of UB with functions and (23) provide that h̃1(p1 + p2)ũ2(p1,p2) is an eigen-
function: the delta function determines the eigenvalue. Then, ũ2(p1,p2) is a solution to (22)
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with minimal volume spatial support within a family of functions f̃2(p1,p2) in (13): ũ2 is the
description of a bound state without a contribution to spreading from a description of the
center-of-momentum h̃1 ̸= 1. h̃1(p) = 1 exhibits the minimal spatial spread of the support of
f̃2 since the spatial support of f2 is a convolution of the supports of h1 and u2. This description
of bound state persists over time λ: the characterization (23) applies for any λ.

The functions (23) with µ = 0 are studied in section 3.2 to select functions of localized
spacetime support.

3.2 The spatial support of ũ2

To satisfy B.2, the inverse Fourier transform of the functions ũ2 in (23) must be perceived as
localized. There are several characterizations of the support of functions in relativistic quantum
physics [10, 11, 16]. Here, the inverse Fourier transform u2 of ũ2 is used to characterize the
spatial support of the state described by φ2. The support of φ2 given u2 is

φ2(x1, x2) = 2π

2∏
j=1

(
δ(xj0)

√
−∆j + λ−2

c − iδ′(xj0)

)
u2(x1,x2)

from (1) and (4) with ∆j the Laplacian for xj ∈ R3.
√

−∆+ λ−2
c is an anti-local operator [19]

and as a consequence, φ2 is only essentially localized even if the support of u2 were strictly
local [10]. The spatial support of u2 is characterized by the dominant support over x1,x2 of
the inverse Fourier transform of (23).

u2(x1,x2) :=

∫
d(p)2

eip1·x1eip2·x2

(2π)3
δ(HB(p1,p2)) ψ̃u,2(p1,p2) (24)

with a ψ̃u,2 of our choice.
To characterize the support of u2, the effort now focuses on estimation of the rate of decline

of (24) for large ∥xj∥.
The zeros of HB are required to evaluate (24). From the definition (20) for the generator

of UB and the evaluation (17) of E,

HB = ω1 + ω2 − ωb(p1 + p2)− E

=
√
λ−2
c + ρ21 +

√
λ−2
c + ρ22 −

√
λ−2
b + ρ21 + ρ22 + 2ρ1ρ2 cosϕ12 + λ−1

b − 2λ−1
c

(25)

with
p1 · p2 := ρ1ρ2 cosϕ12,

the Euclidean norms of the momentum vectors ρj from (11), and ϕ12 is the angular separation
of the momentum vectors p1 and p2. HB is a function over rotational invariants ρ1, ρ2 and
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p1 · p2. The continuous HB monotonically decreases with increasing cosϕ12 if ρ1ρ2 ̸= 0. The
maximum of HB occurs at p1 ·p2 = −ρ1ρ2 and the minimum occurs at p1 ·p2 = ρ1ρ2. Designate
these extrema

Hmax =
√
λ−2
c + ρ21 +

√
λ−2
c + ρ22 −

√
λ−2
b + (ρ1 − ρ2)2 + λ−1

b − 2λ−1
c

Hmin =
√
λ−2
c + ρ21 +

√
λ−2
c + ρ22 −

√
λ−2
b + (ρ1 + ρ2)2 + λ−1

b − 2λ−1
c .

(26)

If Hmax > 0 and 0 > Hmin , the monotonically decreasing, continuous HB has a single zero for
some ρ1ρ2 cosϕ12 from the intermediate value theorem. Otherwise, the points (p)2 ∈ R6 that
result in both Hmax , Hmin > 0 or both Hmax , Hmin < 0 are excluded from the summation (24)
characterizing the support of u2: the delta function is zero at those (p)2.

From (25) and with the designation

A :=

√
λ−2
c + ρ21 + λ−1

b − 2λ−1
c ,

values of ρ2 that set HB = 0 are solutions to

A+

√
λ−2
c + ρ22 =

√
λ−2
b + ρ21 + ρ22 + 2ρ1ρ2 cosϕ12.

Squaring the equal quantities and reorganization results in

2A

√
λ−2
c + ρ22 = λ−2

b + ρ21 + 2ρ1ρ2 cosϕ12 −A2 − λ−2
c .

Squaring again results in a quadratic polynomial in ρ2. As a consequence, there are at most
two nonnegative real values ρ2 that set HB = 0. Designate the two solutions to the quadratic
polynomial

ρoℓ := ρoℓ(ρ1, ϕ12) ℓ = 1, 2. (27)

Define

aoℓ(ρ1, ϕ12) :=

{
1 if ρoℓ is real, ρoℓ > 0 and HB(p1,p2) = 0 at ρ1, ρoℓ, ϕ12
0 otherwise.

(28)

This aoℓ includes none, one, or two nonnegative real ρoℓ for each ρ1, ϕ12 in the summation
(24). Only (p)2 that result in real, nonnegative ρoℓ that set HB = 0 for the given ρ1, ϕ12 are
included. The included points are demarcated by Heaviside functions θ(Hmax )θ(−Hmin). Given
ρ1, ρ2, there is exactly one cosϕ12 that sets HB = 0 if Hmax > 0 and 0 > Hmin , and no zero
otherwise but an Hmax > 0 and 0 > Hmin test is not adequate to eliminate roots introduced
by squaring: additional roots are introduced by squaring but these roots apply for distinct ϕ12.
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The eigenvalue setting delta function determines whether a (p)2 is included in the summation
(24) and determines the up to two ρ1, ϕ12-specific values for ρ2 that set HB = 0.

δ(HB(p1,p2)) =
2∑

ℓ=1

aoℓ(ρ1, ϕ12)
δ(ρ2 − ρoℓ)∣∣∣∂HB

∂ρ2

∣∣∣ .

with
∂HB

∂ρ2
=
ρ2
ω2

− ρ2 + ρ1 cosϕ12
ωb(p1 + p2)

(29)

from (20). The angular separation ϕ12 of momentum vectors p1 and p2 has

cosϕ12 = cos θ1 cos θ2 sinϕ1 sinϕ2 + sin θ1 sin θ2 sinϕ1 sinϕ2 + cosϕ1 cosϕ2

= cos(θ1 − θ2) sinϕ1 sinϕ2 + cosϕ1 cosϕ2

sin2 ϕ12 = sin2(θ1 − θ2) sin
2 ϕ1 sin

2 ϕ2 − 2 cos(θ1 − θ2) sinϕ1 sinϕ2 cosϕ1 cosϕ2

+sin2 ϕ1 cos
2 ϕ2 + cos2 ϕ1 sin

2 ϕ2

(30)

and sinϕ12 > 0 in the spherical coordinates

pj =

 ρj cos θj sinϕj
ρj sin θj sinϕj
ρj cosϕj

 . (31)

These coordinates are discussed further below (44) in appendix 4.1. Substitution for δ(HB)
results in

u2(x1,x2) =

∫
d(p)2

eip1·x1eip2·x2

(2π)3

 2∑
ℓ=1

aoℓ(ρ1, ϕ12)
δ(ρ2 − ρoℓ)∣∣∣∂HB

∂ρ2

∣∣∣
 ψ̃u,2(p1,p2). (32)

The region included in the summation (32), the points p1,p2 with Hmax > 0 and 0 > Hmin ,
is explored in appendix 4.2 and this region includes points p1,p2:

1. with both ρ1, ρ2 ≫ λ−1
c sufficiently large

2. with ρ1 = ρ2 ̸= 0

3. conditionally, for small ρ1, ρ2 ≪ λ−1
b , dependent on the masses m,mb and the magnitudes

of the momenta ρ1, ρ2

4. conditionally for ρ1 ̸= ρ2 with the magnitude of one momentum very small with respect
to the other.
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General properties of the function ψ̃u,2(x1,x2) are used to demonstrate that there are bound
states within the constructed Hilbert spaces HP . An absolutely Lebesgue summable function
[17] satisfying constraints to eliminate singularities from determination of the eigenspace suffices
to imply a bound state. Functions

ψ̃u,2(p1,p2) =

(
∂HB

∂ρ1

∂HB

∂ρ2

)
ψ̃o,2(p1,p2) (33)

with ψ̃o,2 ∈ L1(R6), pointwise bounded in amplitude and continuous, suffice to characterize
bound states. The mollifier functions ∂HB/∂ρj are summable and bounded by constants. For
spherically symmetric bound states, ψ̃o,2(p1,p2) depends only on rotational invariants ∥p1∥,
∥p2∥ and p1 · p2. Also, anticipate that the description of bound states are transpositionally
symmetric in this boson instance,

ψ̃u,2(p1,p2) = ψ̃u,2(p2,p1). (34)

The mollifier factors in (33) are bounded in absolute value by a constant and therefore do not
affect the absolute summability of ψ̃o,2(p1,p2). From (29),∣∣∣∣∂HB

∂ρ2

∣∣∣∣ ≤
∣∣∣∣ ρ2ω2

∣∣∣∣+ ∣∣∣∣ρ2 + ρ1 cosϕ12
ωb(p1 + p2)

∣∣∣∣
≤ 1 +

∣∣∣∣∣ ρ2 + ρ1 cosϕ12√
ρ21 + ρ22 + 2ρ1ρ2 cosϕ12

∣∣∣∣∣
≤ 1 +

∣∣∣∣∣ ρ2 + ρ1 cosϕ12√
(ρ2 + ρ1 cosϕ12)2

∣∣∣∣∣
≤ 2

(35)

from monotonicity,
√
a2 + b2 >

√
c2 + b2 if a > c.

Substitution of the mollified function (33) into (32), and a change in summation variables
to spherical coordinates (31) results in

u2(x1,x2) =

∫
d(p)2

eip1·x1eip2·x2

(2π)3

(
2∑

ℓ=1

aoℓ(ρ1, ϕ12) δ(ρ2 − ρoℓ)

)

×∂HB
∂ρ1

sgn(∂HB
∂ρ2

) ψ̃o,2(p1,p2)

=

∫ ∞

0
ρ21dρ1

∫ 2π

0
dθ1

∫ π

0
sinϕ1dϕ1

∫ 2π

0
dθ2

∫ π

0
sinϕ2dϕ2

( 2∑
ℓ=1

aoℓ(ρ1, ϕ12)

× ρ2oℓ
eiρ1r1 cosϕ1eiρoℓr2 cosϕ2

(2π)3
∂HB
∂ρ1

sgn(∂HB
∂ρ2

) ψ̃o,2(p1,p2)

∣∣∣∣
ρ2=ρoℓ

(36)
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for the description of the internals of a bound state. The sign function is sgn(x) := x/|x| = ±1.
The selection of z-axes aligned with x1 and x2 results in

pj · xj = ρjrj cosϕj

with rj = ∥xj∥.
The Riemann-Lebesgue lemma provides that Fourier transforms of Lebesgue summable

functions decline to zero for large ∥x1∥, ∥x2∥. The rate of decay is governed by the differen-
tiablity of the transformed function. The condition (23) that restricts the summation (32) to
one eigenspace introduces discontinuities. Localized support is demonstrated by characterizing
the rate of decay of (36) with rj .

Isolating consideration on the ϕ1 summation in (36), with

Fℓ(ρ1, θ1, θ2, ϕ2) :=

∫ π

0
sinϕ1dϕ1 e

iρ1r1 cosϕ1Iℓ(ρ1, θ1, ϕ1, θ2, ϕ2) (37)

and

Iℓ(ρ1, θ1, ϕ1, θ2, ϕ2) := eiρoℓr2 cosϕ2 aoℓ(ρ1, ϕ12)
ρ2oℓ

(2π)3
∂HB

∂ρ1
sgn(

∂HB

∂ρ2
) ψ̃o,2(p1,p2)

∣∣∣∣
ρ2=ρoℓ

then

u2(x1,x2) =
2∑

ℓ=1

∫ ∞

0
ρ21dρ1

∫ 2π

0
dθ1

∫ 2π

0
dθ2

∫ π

0
sinϕ2dϕ2 Fℓ(ρ1, θ1, θ2, ϕ2).

Iℓ is a piecewise continuous, bounded L1 function over ϕ1 given ρ1, θ1, θ2, ϕ2. The r2 dependence
of Iℓ, Fℓ is suppressed in this notation. Substitution of the summation variable s = cosϕ1,
sinϕ1 =

√
1− s2, results in

r1Fℓ(ρ1, θ1, θ2, ϕ2) = r1

∫ 1

−1
ds eiρ1r1s Iℓ

= − i

ρ1

∫ 1

−1
ds

∂eiρ1r1s

∂s
Iℓ

The ϕj dependence of Iℓ is cosϕj and sinϕj in ϕ12 from (30). The p1 ·p2 from HB in (20) and
derivatives (29), and in rotationally invariant ψ̃o,2 from (33) vary with cosϕ12. Labeling the
limits of the summation and the discontinuities by ak results in

r1Fℓ(ρ1, θ1, θ2, ϕ2) = − i

ρ1

N∑
k=1

∫ ak+1

ak

ds
∂eiρ1r1s

∂s
Iℓ

= − i

ρ1

(
N∑
k=1

eiρ1r1sIℓ

∣∣∣∣∣
ak+1

ak

−
∫ ak+1

ak

ds eiρ1r1s
∂Iℓ
∂s

 (38)
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with a1 = −1, aN+1 = 1 and ak < ak+1. The second line results from integration by parts.
Upper bounding the amplitude of the sum by the sum of amplitudes results in

r1|Fℓ(ρ1, θ1, θ2, ϕ2)| ≤
1

ρ1

(
N∑
k=1

|Iℓ|

∣∣∣∣∣
ak+1

ak

+

∫ ak+1

ak

ds

∣∣∣∣∂Iℓ∂s
∣∣∣∣
 .

This upper bound is independent of both r1 and r2. The ρ−1
1 times the ρ21 from the Jacobian

to spherical coordinates leaves the summable ρ1.
Concerns are whether Iℓ has summable divergences that become unsummable with differenti-

ation. This is not the case. The function Iℓ is bounded, continuous and piecewise differentiable.
Discontinuities occur in aoℓ(ρ1, ϕ12) from (28) and in sgn(∂HB/∂ρ2) from (29). ρoℓ from (27),
∂HB/∂ρ1 from (29) and our choice of ψ̃o,2(p1,p2) are once differentiable as summable functions
over s from the chain rule.

d
√
1− s2

ds
=

s√
1− s2

=
s√

(1− s)(1 + s)
.

The roots ρoℓ of the quadratic polynomial vary continuously with the coefficients [9] and the
coefficients are differentiable. Diverging rootsa ρoℓ are controlled by the rapid decline of ψ̃oℓ.
Exclusion of complex roots and roots introduced by squaring is implemented by aoℓ(ρ1, ϕ12).
The function ∂Iℓ/∂s is an absolutely summable function of ϕ1 and its summation produces a
L1 function over ρ1, θ1, θ2, ϕ2

Second or higher derivatives of eiρ1r1s with the discontinuous Iℓ result in derivatives of delta
functions [6, 14] that restore factors of r1 and consequently do not result in demonstrations of
a faster rate of decline with r1.

Substitution of (38) into (37), upper bounding r1u2(x1,x2) with absolute values and absolute
summability provides that

r1|u2(x1,x2)| ≤ A.

Transpositional symmetry provides a similar decline with ρ2.

|u2(x1,x2)| ≤ min
r1,r2

(
A

r1
,
A

r2

)
. (39)

The bound (39) suffices to demonstrate that the dominant support of u2(x1,x2) from (24)
lies within finite spheres centered on the bound state. For many functions ψ̃u,2(p1,p2), the
likelihood per unit volume for an observation of location decreases with expanding distance
r1, r2 from the center of support.

aWith the quadratic polynomial designated aρ22 + bρ2 + c = 0, a divergent root occurs for a → 0.
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The spatial support of u2 characterizes the likelihoods of location measurements. From
Born’s rule, likelihoods follow from the scalar product (9),

Likelihood =
⟨φ2|Px1,x2φ2⟩|2

⟨φ2|φ2⟩

=
|⟨ψ2|φ2⟩|2

⟨φ2|φ2⟩⟨ψ2|ψ2⟩

with Px1,x2 the projection operator onto states with support limited to x1,x2,

g̃2(p1,p2) :=
e−ip1·x1e−ip2·x2

(2π)3

and f̃2 := ũ2. In (1), f̃2, g̃2 define φ̃2, ψ̃2. This likelihood is a limit from a sequence of elements
in HP approaching the eigenfunction of location with eigenvalues x1,x2. Eigenstates of loca-
tion are idealized and not elements of the L2, Fock, nor HP Hilbert spaces used in quantum
mechanics.

The free field VEV contribution to this likelihood is evaluated using (12),

FW2,2(ψ
∗
2 φ2) =

∫
d(p)2
(2π)3

8ω1ω2 e
ip1·x1eip2·x2 ũ2(p1,p2)

for argument transposition symmetric functions, and the connected VEV contribution is from
(10),

CW2,2(ψ
∗
2 φ2) = c4

∫
d(p)2
(2π)3

sinϕ′3dθ
′
3dϕ

′
3

ρ′1ω̂3ω̂4

2ω′
1

eip1·x1eip2·x2 ũ2(p̂3, p̂4)

= c4

∫
sinϕ′3dθ

′
3dϕ

′
3

(∫
d(p)2
(2π)3

ρ′1ω̂3ω̂4

2ω′
1

eip1·x1eip2·x2 ũ2(p̂3, p̂4)

)
.

Then, Laplacians ∆j operating on u2 provide the free field VEV contribution to the likelihood
of location. From appendix 4.1, the constrained momenta p̂3, p̂4 are the spatial components of
rotations, boosts and energy-momentum rescales followed by the inverse boosts and rotations.

p̂j = R−1B−1C(BRpj)

for rotations R, pure boosts B and the energy-momentum rescaling C(p) determined by p1,p2,
appendix 4.1. Up to a rotation, the constrained momenta are determined by the boost and
rescale,

Rp̂j = B−1C(BRpj),
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and then if ũ2 is a function solely of the rotational invariants ∥p1∥, ∥p2∥ and p1 · p2,

ũ2(p̂3, p̂4) ≈ ũ2(p1,p2),

in nonrelativistic instances, those with B ≈ 1. Except for relativistic distortion, finite summa-
tions operated upon by Laplacians of an approximation with rotationally invariant weightings
ρ′1/ω

′
1 within the summations appear in the connected VEV contribution to the likelihood of

location. And, although the individual rotational invariants ∥p1∥, ∥p2∥ and p1 · p2 distort in
relativistic instances, conservation of energy-momentum, p1 + p2 = p̂3 + p̂4, provides that their
sum is relativistically invariant,

∥p̂3 + p̂4∥2 = ∥p1 + p2∥2 = ∥p1∥2 + ∥p2∥2 + 2p1 · p2.

Then, the support of u2 characterizes the likelihood of location.

3.3 Approximation of ũ2 within HP

In this section it is demonstrated that the description of a bound state from section 3 is not an
element of the Hilbert spaceHP , but is arbitrarily well approximated by elements. This satisfies
B.3. The functions φ̃2(p1, p2) from (1), (13) and (23) have infinite norm, but like momentum
and location eigenfunctions, are arbitrarily well approximated by elements of HP .

The free field contribution to the scalar product is the Lebesgue summation (12),

FW2,2(φ
∗
2 φ2) =

∫
d(p)2 4ω1ω2 ũ2(p1,p2)(ũ2(p1,p2) + ũ2(p2,p1))

=

∫
d(p)2 8ω1ω2 |ψ̃u,2(p1,p2)|2 δ2(HB(p1,p2)).

(40)

from the transpositional symmetry of HB in (20) and ψ̃u,2 in (34). Then, if the four-point
VEV includes this free field contribution, the norm ∥φ̃2∥ diverges: δ2(x) is divergent. In this
evaluation h̃1 = 1, but introduction of another description h̃1 for the center-of-momentum that
is a multiplier of test functions does not affect this argument. The functions φ̃2(p1,p2) that
describe bound states are not elements of HP . This result is similar to that the eigenfunctions
of momentum and location are not elements of the Hilbert spaces for the relativistic quan-
tum physics constructions [10], for relativistic free fields [3], nor for the L2 Hilbert spaces of
nonrelativistic quantum mechanics. And, like the location and momentum eigenfunctions, the
functions φ̃2(p1,p2) are arbitrarily well approximated by Hilbert space elements. For illustra-
tion, functions (23) with a delta sequence of Gaussian functions substituted for δ(HB(p1,p2)
are elements of HP .
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The connected VEV contribution to the scalar product is the Lebesgue summation (10),

CW2,2(φ
∗
2 φ2) = c4

∫
d(p)2 sinϕ

′
3dθ

′
3dϕ

′
3

ρ′1ω̂3ω̂4

2ω′
1

ũ2(p1,p2)ũ2(p̂3, p̂4)

= c4

∫
d(p)2 sinϕ

′
3dθ

′
3dϕ

′
3

ρ′1ω̂3ω̂4

2ω′
1

ψ̃u,2(p1,p2)ψ̃u,2(p̂3, p̂4)

×δ(HB(p1,p2) δ(HB(p̂3, p̂4)

(41)

with h̃1 = 1, and the summations over p4 and ρ3 determined by energy-momentum conservation
for the four on-mass shell Lorentz vectors pj , j = 1, 2, 3, 4. The energy-momentum conservation-
constrained momentum components p̂j from (51) in appendix 4.1 are functions over p1,p2 and
θ′3, ϕ

′
3. ρ

′
1 = ∥p′

1∥ and ω′
1 = ω(p′

1) with

p′1 = Λp1.

Λ is a (p1+p2)-dependent Lorentz transformation provided in (46) and (47) of appendix 4.1.
From momentum conservation,

(p̂3 + p̂4)
2 = (p1 + p2)

2

and the conservation of energy,
ω1 + ω2 = ω̂3 + ω̂4,

The evaluation (20) of HB provides

HB(p1,p2) = ω1 + ω2 −
√
λ−2
b + (p1 + p2)2 + λ−1

b − 2λ−1
c

= ω̂3 + ω̂4 −
√
λ−2
b + (p̂3 + p̂4)2 + λ−1

b − 2λ−1
c

= HB(p̂3, p̂4).

As a consequence, there is a factor of δ2(HB(p1,p2) in the evaluation of the connected VEV
contribution to the scalar product and this contribution to the norm diverges similarly to the
free field VEV contribution.

3.4 Properties of relativistic bound states

In this section it is demonstrated that bound states are orthogonal to all plane wave states
except those with zero momenta. As a consequence, the likelihood of producing a bound state
in a scattering event vanishes unless the VEV include connected functions of the same order as
the VEV.
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Two classically described particles cannot scatter into a bound state without additional
products to carry away excess energy. This result applies to the relativistic quantum description
of bound states. Below, the demonstration includes that ⟨q1,q2|φ̃2⟩ = 0: the two-argument
bound states are orthogonal to plane wave states of the elementary particles unless q1 = q2 = 0.

The existence of bound states did not require any special properties of the VEV, but the
demonstration below illustrates that bound states do not result from collisions of the free
elementary particles unless the constructed VEV include connected contributions.

From (9) and for a state description ψ̃2 that is an eigenfunction of two momenta, the
scattering amplitude for two incoming (near) plane wave states described by q1,q2 transitioning
to an outgoing state that consists solely of a bound state described by ũ2 is

Scattering amplitude = ⟨ψ2|φ2⟩

with
g̃2(p1,p2) = δ(p1 − q1)δ(p2 − q2),

f̃2 := h̃1ũ2 from (13) and ũ2 is from (23). In (1), f̃2, g̃2 define φ̃2, ψ̃2. This amplitude is a limit
of a sequence of elements in HP approaching the eigenfunction of momenta with eigenvalues
q1,q2. Momentum eigenfunctions are idealizations and not elements of the Hilbert spaces L2,
Fock space, nor HP used in quantum mechanics. The free field contribution to this scalar
product is (12),

FW2,2(ψ
∗
2 φ2) =

∫
d(p)2 8ω1ω2 δ(p1 − q1)δ(p2 − q2)f̃2(p1,p2)

= 8ω(q1)ω(q2) f̃2(q1,q2)

for argument transposition symmetric functions, and the connected VEV contribution to the
scalar product is (10),

CW2,2(ψ
∗
2 φ2) = c4

∫
d(p)2 sinϕ

′
3dθ

′
3dϕ

′
3

ρ′1ω̂3ω̂4

2ω′
1

δ(p1 − q1)δ(p2 − q2)f̃2(p̂3, p̂4)

= c4

∫
sinϕ′3dθ

′
3dϕ

′
3

∥q′
1∥ω̂3ω̂4

2ω(q′
1)

f̃2(p̂3, p̂4).

The primed and hatted momentum variables p′
j and p̂j are described in appendix 4.1 as linear

combinations
p′ = Λp

and momentum magnitude adjusted vectors with Λ defined from q1 + q2.
In the single, scalar field instance, an automorphism of P implements Poincaré transforma-

tions.
(a,Λ)φ := (φo, . . . φn(Λ

−1(x1 − a), . . .Λ−1(xn − a)), . . .)



3 BOUND STATES 20

with Λ a proper orthochronous Lorentz transformation and a a Lorentz vector translation. The
automorphism is

(a,Λ)φ̃ := (φo, . . . exp(i(p1 + p2 . . .+ pn)a)φ̃n(Λ
−1p1, . . .Λ

−1pn), . . .)

in the Fourier transform domain. The descriptions of states are Poincaré covariant

φ2 7→ (a,Λ)φ2

and the scalar product (9) is Poincaré invariant.

⟨ψ2|φ2⟩ = ⟨(a,Λ)ψ2|(a,Λ)φ2⟩.

The Poincaré invariance of amplitudes provides that the amplitude can be evaluated in the
center-of-momentum frame for q1,q2 without loss of generality. In this frame, the rest frame
of q1 + q2,

q1 + q2 = 0

and from the description of bound states (23), the functions f̃2 include a factor

δ(HB(p1,p2))

that is zero for both FW2,2(ψ
∗
2 φ2) and CW2,2(ψ

∗
2 φ2) unless q1 = q2 = 0. This result fol-

lows from inspection of HB in the center-of-momentum frame. From conservation of energy-
momentum, p1 + p2 = p̂3 + p̂4 and then

q1 + q2 = p̂3 + p̂4 = 0.

In the evaluation of FW2,2(ψ
∗
2 φ2) or

CW2,2(ψ
∗
2 φ2), the definition (20) of HB and the evaluation

(17) of E provides that if q1 + q2 = 0 then

HB = ω1 + ω2 − ωb(q1 + q2)− E

=
√
λ−2
c + ρ21 +

√
λ−2
c + ρ22 − 2λ−1

c

≥ 0

in the center-of-momentum frame. HB is strictly greater than zero unless ρ1 = ρ2 = 0.
ρ1, ρ2 designates ∥q1∥, ∥q2∥ in the instance of FW2,2(ψ

∗
2 φ2) and ∥ρ̂3∥, ∥ρ̂4∥ in the instance

of CW2,2(ψ
∗
2 φ2). As a consequence, the bound states are orthogonal to the plane wave descrip-

tions of free elementary particles,

⟨ψ2|φ2⟩ := ⟨q1,q2|φ2⟩ = 0
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for all nonzero q1,q2. The orthogonality applies for any time since the time translates of the
momentum eigenfunctions are equal up to a phase.

U(λ)|q1,q2⟩ = e−i(ω1+ω2)λ|q1,q2⟩

from (8).
The discussion of bound states within the two-argument subspace did not assume any prop-

erties of the VEV. However, with ⟨q1,q2|φ2⟩ = 0, if the free field VEV were all that appeared in
the development, then no collision could ever produce a bound state. For example, if a CW3,3

were excluded, then the cluster decomposition of the VEV displays the scalar product composed
of only lower order VEV. These all vanish for incoming states described as plane waves with
outgoing states consisting of plane waves and bound states. With three incoming elementary
particles transitioning to a bound state plus one free elementary particle, the description of a
two-argument bound state equates

U(λ)h̃1(p1 + p2) ũ2(p1,p2)ṽ1(p3)

=
(
e−iωb(p1+p2)λ h̃1(p1 + p2)

) (
e−iEλ ũ2(p1,p2)

) (
e−iω3λṽ1(p3)

)
with ṽ1 a description of an asymptotically free elementary particle. In these higher order VEV
instances, the development of ũ2 is the same as in section 3.1. However, with the additional
arguments, conservation of energy-momentum no longer implies the equality of subsets of mo-
menta,

0 = q1 + q2 ̸= p̂3 + p̂4.

As a consequence, amplitudes such as

⟨q1,q2,q3|φ2,q4⟩

do not generally vanish if a connected function CW3,3 contributes. If the VEV are free field
VEV, then momenta are equal in pairs and there are no transitions from plane wave states to
bound states in scattering amplitudes.b

Bound states are created from collisions of free elementary particles if higher order connected
functions contribute. Existence of bound state did not require knowledge of the VEV, but the
likelihood of creating a bound state is zero without connected contributions to VEV.

bIn the general construction of relativistic quantum mechanics, the elementary particles are produced or
annihilated in pairs: only even order VEV appear [10]. However, with the scalar representation of the Poincaré
group, odd order VEV may appear [11].
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4 Appendices

4.1 Energy conservation

The connected VEV (5) include both energy-momentum conservation and on-mass shell Dirac
delta functions. The summations in the scalar product (9) are constrained to manifolds within
(p)4 ∈ R16 within the support of

δ(p1 + p2 − p3 − p4)
4∏

j=1

δ(p2j − λ−2
c ).

Within this manifold, the energy and momenta of four on-mass shell m Lorentz vectors pj add
to zero. The joint support of the VEV (5) and functions (1) from P provides that each energy
of a state describing functions is on a positive energy mass m shell, pj0 = ωj from (2).

p4 = p1 + p2 − p3

satisfies the momentum conservation constraint. Satisfaction of the remaining energy support
condition is considered a constraint on p3. This constraint is evaluated in this appendix.
Evaluation of the generalized function that implements energy conservation leaves a Lebesgue
summation for the scalar product (9) in the two-argument subspace of HP .

The scalar product within the two-argument subspace (9) derives from the VEV (5) for
functions ψ2, φ2 ∈ P(R8) from (1). The connected component of the scalar product ⟨ψ2|φ2⟩
from (9) exhibits interaction and equals

CW2,2(ψ
∗
2 φ2) = c4

∫
d(p)4 δ(p1+p2−p3−p4)

4∏
j=1

δ(pj0 − ωj) g̃2(p2, p1) f̃2(p3, p4)

with the Lorentz invariants δ(p) and

δ(p2j − λ−2
c ) θ(pj0) =

δ(pj0 − ωj)

2ωj
.

After evaluation of the mass shell and momentum conservation delta functions, the argument
of the energy conservation delta function is

ω1+ω2−ω3−ω4 = ω(p1)+ω(p2)−ω(p3)−ω(p1+p2−p3) (42)

using (2). (42) is zero if p3 = p1 or p2, the forward scatter cases. More generally, (42) is zero
if p3, is constrained within a p1,p2-dependent manifold.

A change of summation variables,
p′j := Λpj (43)
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for j = 1, 2, 3, 4, is selected to transform to the center-of-momentum frame for each p1, p2. The
transformation is a proper (det(Λ)=1), orthochronous (Λ00 > 0) Lorentz transformation

Λ := BR

consisting of a rotation R and a boost B. To evaluate Λ, designate the center-of-momentum
for each p1, p2

q := p1 + p2 =


ω1 + ω2

ρ cos θ sinϕ
ρ sin θ sinϕ
ρ cosϕ

 (44)

in polar coordinates with the momentum q := (qx, qy, qz),

ρ := ∥q∥ = ∥p1 + p2∥,

and

cosϕ =
qz
ρ
, sinϕ =

√
q2x + q2y

ρ

cos θ =
qx√
q2x + q2y

, sin θ =
qy√
q2x + q2y

cos θ sinϕ =
qx
ρ
, sin θ sinϕ =

qy
ρ

(45)

with quadrants selected for θ, ϕ to correspond with the signs of qx, qy, qz. θ ∈ {0, 2π} is the
anticlockwise angle of q from the x-axis in the x-y plane, and ϕ ∈ {0, π} is the angle of q from
the z-axis in the plane containing q and the z-axis. Then, the rotation R aligns the momentum
q with the primed z-axis,

ω1 + ω2

0
0
ρ

 = Rq :=


1 0 0 0
0 sin θ − cos θ 0
0 cos θ cosϕ sin θ cosϕ − sinϕ
0 cos θ sinϕ sin θ sinϕ cosϕ




ω1 + ω2

ρ cos θ sinϕ
ρ sin θ sinϕ
ρ cosϕ

 (46)

and the boost B is along the rotated z-axis and zeros the momentum.
2ω′

1

0
0
0

 = BRq :=


λcω(β) 0 0 −λcβ

0 1 0 0
0 0 1 −0

−λcβ 0 0 λcω(β)




ω1 + ω2

0
0
ρ

 (47)
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with ω(β) determined similarly to (2),

ω(β) =

√
λ−2
c + β2 = λ−1

c

√
1 +

(
ℏβ
mc

)2

,

and
−λcβ (ω1 + ω2) + λcω(β)ρ = 0.

Then,

λcβ =
ρ√

(ω1 + ω2)2 − ρ2
. (48)

β is nonnegative and real since ω1 + ω2 > ρ for finite m with ρ = ∥p1 + p2∥. λc is the reduced
Compton’s wavelength (3). In this primed, center-of-momentum frame, ω′

1 = ω′
2. Both the

rotation R and boost B are determined by q = p1 + p2 and (2). This transformation can
alternatively be parameterized

ω(β) =

(√
1− v2

c2

)−1

,

relating velocity v to the momentum β. Rotations are orthogonal transformations and the
inverse of the rotation is R−1 = RT . The inverse of the boost is B evaluated with the negative
momentum, β 7→ −β.

Satisfaction of momentum conservation is evident in the primed, center-of-momentum frame
of reference. In this frame and for each particular u, p′

2 = −p′
1 and then momentum conser-

vation provides that p′
4 = −p′

3. With this change to summation variables (43), the connected
contribution to the scalar product (9) becomes

CW2,2(ψ
∗
2 φ2) = c4

∫
d(p′)4 δ(p

′
1+p

′
2−p′3−p′4)

4∏
j=1

δ(pj0 − ωj)

×g̃2(Λ−1p′2,Λ
−1p′1)f̃2(Λ

−1p′3,Λ
−1p′4)

= c4

∫
d(p′)4 δ(2ω

′
1−2ω′

3) δ(p
′
3+p′

4)

4∏
j=1

δ(pj0 − ωj)

×g̃2(Λ−1p′2,Λ
−1p′1) f̃2(Λ

−1p′3,Λ
−1p′4)

noting the Lorentz invariance of δ(p) = δ(Λp) from |det(Λ)| = 1. The energy conservation delta
function is

δ(2ω′
3 − 2ω′

1) =
δ(ρ′3 − ρ′1)

2

∣∣∣∣dω(p′
3)

dρ′3

∣∣∣∣
=

ω′
1

2ρ′1
δ(ρ′3 − ρ′1)

(49)
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[6] from ρ′3 = ρ′1 with ρ′j := ∥p′
j∥ and ω′

j := ω(p′
j).

If the primed, unconstrained

p′3 :=


ω′
3

ρ′3 cos θ
′
3 sinϕ

′
3

ρ′3 sin θ
′
3 sinϕ

′
3

ρ′3 cosϕ
′
3

 and p′4 = ϑp′3

then the primed, constrained

p̂′3 :=


ω′
1

ρ′1 cos θ
′
3 sinϕ

′
3

ρ′1 sin θ
′
3 sinϕ

′
3

ρ′1 cosϕ
′
3

 and p̂′4 = ϑp̂′3 (50)

with the spatial reflection ϑ defined

ϑp̂′3 :=


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 p̂′3 =


ω′
1

−ρ′1 cos θ′3 sinϕ′3
−ρ′1 sin θ′3 sinϕ′3
−ρ′1 cosϕ′3ϑ

 .

The polar angles θ′3, ϕ
′
3 are in the primed coordinate frame.

Now, evaluation of the momentum conservation delta function, and substitution of the
simplified energy conservation delta function and the constrained p̂′3 provides that

CW2,2(ψ
∗
2 φ2) = c4

∫
d(p′)2dp

′
30dp

′
40 dΩ

′
3 ρ

′
1
2 ω′

1

2ρ′1

4∏
j=1

δ(pj0 − ωj)

×g̃2(Λ−1p′2,Λ
−1p′1)f̃2(Λ

−1p̂′3,Λ
−1p̂′4).

Ω′
3 are the polar angle coordinates of p′

3, dp
′
3 = ρ′3

2dρ′3dΩ3 with dΩ′
3 := sinϕ′3dθ

′
3dϕ

′
3. Note

that this summation would diverge in fewer than 2 + 1 dimensions for finite m [10, 13].
From the Lorentz invariance of δ(p2 −m2)θ(p0),

δ(pj0 − ωj)

2ωj
=
δ(p′j0 − ω′

j)

2ω′
j

with Lorentz transformation. In the center-of-momentum frame, ω̂′
3 = ω̂′

4 = ω′
1, evaluation of

the p30, p40 delta functions result in

CW2,2(ψ
∗
2 φ2) = c4

∫
d(p′)2 dΩ

′
3 ρ

′
1
2 ω′

1

2ρ′1

2∏
j=1

δ(pj0 − ωj)
ω̂3ω̂4

ω̂′
3ω̂

′
4

g̃2 f̃2

= c4

∫
d(p′)2 dΩ

′
3

ρ′1ω̂3ω̂4

2ω′
1

2∏
j=1

δ(pj0 − ωj) g̃2(Λ
−1p′2,Λ

−1p′1)f̃2(Λ
−1p̂′3,Λ

−1ϑp̂′3).
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Note that ω̂j for j = 3, 4 designates ω(p̂j) using (2) determined from the momentum components
of the unprimed, constrained values of the momentum components of

p̂3 := Λ−1p̂′3 and p̂4 := Λ−1ϑp̂′3 (51)

and (50). ω̂′
j designates ω(p̂

′
j). From (43), p′

1 are the spatial components of Λp1 and ρ
′
1 = ∥p′

1∥.
Finally, return to the original summation variables p1, p2 produces

⟨ψ2|φ2⟩ = c4

∫
d(p)2 dΩ

′
3

ρ′1ω3ω4

2ω′
1

g̃2(p2, p1)f̃2(p̂3, p̂4),

an explicit Lebesgue summation for the scalar product (9). Note that each energy-momentum
is on a mass m shell, pj0 = ωj from (2), and (51) for j = 3, 4.

Both B and R are determined by u from (44), u = p1 +p2, and from ω1 and ω2. ρ
′
1 and ω′

1

are determined from p′
1 using (43) and p1.

p′1 = Λp1 = Λ


ω1

p1x
p1y
p1z

 .

p̂′3 and p̂′4 = ϑp̂′3 are determined from ρ′1, θ
′
3 and ϕ′3 in (50), and p̂3, p̂4 are determined in (51).

The Lorentz vector
p̂′3 + p̂′4 = (2ω′

1, 0, 0, 0)
T

is time-like, and
p̂′3 − p̂′4 = (0, 2p̂′

3)

is space-like. Proper orthochronous transformation Λ−1 of time-like vectors remain time-like,
and the transformation of space-like vectors remain space-like. These vectors are also orthogonal
in the Minkowski dot product, evident above and since both p̂3 and p̂4 are rest mass m Lorentz
energy-momentum vectors,

(p̂3 + p̂4)(p̂3 − p̂4) = p̂23 − p̂24 = m2 −m2 = 0.

The Lorentz vector

p̂3 + p̂4 = Λ−1(p̂′3 + p̂′4)

= R−1B−1(2ω′
1, 0, 0, 0)

T

= 2λcω
′
1R−1(ω(β), 0, 0, β)T

= 2λcω
′
1


ω(β)

β cos θ sinϕ
β sin θ sinϕ
β cosϕ


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independently of Ω3, in the same direction as u, with magnitude adjusted to conserve energy
with on-mass m shell energy-momenta, and with momentum magnitude β. The polar angles
θ, ϕ are determined by p1+p2 in (44). From conservation of energy-momentum, p1+p2 = p̂3+p̂4
and then

∥p̂3 + p̂4∥ = ∥p1 + p2∥ = ρ = 2λcβω
′
1,

a succinct relationship of ω′
1, ρ and β. Then (48) provides relationships of the prime and

unprimed frame quantities

2ω′
1 =

√
(ω1 + ω2)2 − ρ2

2ρ′1 =
√
(ω1 + ω2)2 − ρ2 − 4λ−2

c .

Also,

p̂3 − p̂4 = Λ−1(p̂′3 − p̂′4)

= R−1B−1(0, 2p̂′
3)

T

= 2ρ′1R−1(λcβ cosϕ
′
3, cos θ

′
3 sinϕ

′
3, sin θ

′
3 sinϕ

′
3, λcω(β) cosϕ

′
3)

T

= 2ρ′1


λcβ cosϕ

′
3

sin θ cos θ′3 sinϕ
′
3 + cos θ cosϕ sin θ′3 sinϕ

′
3 + λcω(β) cos θ sinϕ cosϕ

′
3

cos θ cos θ′3 sinϕ
′
3 + sin θ cosϕ sin θ′3 sinϕ

′
3 + λcω(β) sin θ sinϕ cosϕ

′
3

− sinϕ sin θ′3 sinϕ
′
3 + λcω(β) cosϕ cosϕ

′
3

 .

The primed and original variables are linearly related by (43), p′j = Λpj .

4.2 The supported region

The support included in the Fourier transform (24) includes the p1,p2 ∈ R6 with HB(p1,p2) =
0. HB is from (20). This region include momenta p1,p2 with magnitudes ρ1, ρ2 (11) such that
Hmax > 0 and 0 > Hmin . Hmax and Hmin are evaluated in (26). The continuous, monotonic
Hmax > HB(p1,p2) > Hmin and then there is a p1 · p2 with HB = 0. In this appendix, this
region within R6 is characterized using estimates for the functions ωj from (2) and ωb(p) from
(15).

Insight into the region included in the summation (24) follows from small and large momen-
tum Taylor series approximations to the energies from (2) and (15). For p2 ≪ λ−2

c ,√
λ−2
c + p2 ≈ λ−1

c +
λc
2
p2

and for p2 ≫ λ−2
c , √

λ−2
c + p2 ≈ ∥p∥+ λ−2

c

2∥p∥
.
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Three cases are examined: both momenta large with respect to λ−1
c (relativistic); both momenta

small with respect to λ−1
c (nonrelativistic); and one momenta very small with respect to the

second momenta that is large with respect λ−1
c .

If the magnitude squared of both momenta are relativistic, magnitudes squared are large
with respect to λ−2

c , and if (p1 − p2)
2 is large with respect to λ−2

b , then (26) and the Taylor
series approximation provide that

Hmax ≈ ρ1 + ρ2 +
λ−2
c

2ρ1
+
λ−2
c

2ρ2
− |ρ1 − ρ2| −

λ−2
b

2|ρ1 − ρ2|
+ λ−1

b − 2λ−1
c

= 2min(ρ1, ρ2) +

(
1−

λ−1
b

2|ρ1 − ρ2|

)
λ−1
b −

(
2− λ−1

c

2ρ1
− λ−1

c

2ρ2

)
λ−1
c

Hmin ≈ ρ1 + ρ2 +
λ−2
c

2ρ1
+
λ−2
c

2ρ2
− ρ1 − ρ2 −

λ−2
b

2(ρ1 + ρ2)
+ λ−1

b − 2λ−1
c

=

(
1−

λ−1
b

2(ρ1 + ρ2)

)
λ−1
b −

(
2− λ−1

c

2ρ1
− λ−1

c

2ρ2

)
λ−1
c .

Hmax > 0 for sufficiently large ρ1, ρ2. Similarly, Hmin < 0 unless

0 < 2λ−1
c − λ−1

b <
λ−2
c

2ρ1
+
λ−2
c

2ρ2
−

λ−2
b

2(ρ1 + ρ2)
.

This never applies for sufficiently large ρ1, ρ2 and then Hmin < 0.
The instances with (ρ1 − ρ2)

2 ≪ λ−2
b and relativistic ρ1, ρ2 ≫ λ−1

c result in

Hmax ≈
√
λ−2
c + ρ21 +

√
λ−2
c + ρ22 − 2λ−1

c − λb
2
(ρ1 − ρ2)

2 > 0

always satisfied for sufficiently large ρ1, ρ2. The bounds onHmin do not require (ρ1−ρ2)2 ≪ λ−2
b

and the previous estimate for relativistic ρ1, ρ2 applies.
Then, for both ρ1, ρ2 sufficiently large, Hmax > 0 and 0 > Hmin .
If the magnitude squared of both momenta are sufficiently nonrelativistic, the magnitudes

squared are small with respect to both λ−2
c and λ−2

b , then

Hmax ≈ 2λ−1
c + λc

2 (ρ
2
1 + ρ22)− λ−1

b − λb
2 (ρ1 − ρ2)

2 + λ−1
b − 2λ−1

c

= λc
2 (ρ

2
1 + ρ22)−

λb
2 (ρ1 − ρ2)

2

Hmin ≈ 2λ−1
c + λc

2 (ρ
2
1 + ρ22)− λ−1

b − λb
2 (ρ1 + ρ2)

2 + λ−1
b − 2λ−1

c

= λc
2 (ρ

2
1 + ρ22)−

λb
2 (ρ1 + ρ2)

2.

Hmin is less than zero if
λc
2
(ρ21 + ρ22) <

λb
2
(ρ1 + ρ2)

2
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or, reorganizing,
λc − λb

2
(ρ21 + ρ22) < λbρ1ρ2.

Hmax is positive if
λc
2
(ρ21 + ρ22) >

λb
2
(ρ1 − ρ2)

2

or, reorganizing,
λc − λb

2
(ρ21 + ρ22) > −λbρ1ρ2.

Then, the points p1,p2 are included in the summation (24) if

− ρ1ρ2
ρ21 + ρ22

<
λc − λb
2λb

<
ρ1ρ2
ρ21 + ρ22

.

If this condition is violated, then Hmax ≤ 0 or Hmin ≥ 0.
In summary, for sufficiently small ρ1, ρ2, Hmax > 0 and 0 > Hmin are conditional, dependent

on the mass mb of the bound state relative to the elementary mass m and the magnitudes of
the momenta ρ1, ρ2. For sufficiently small ρ1, ρ2, there are points ρ1, ρ2 excluded from the
summation (24). For sufficiently small ρ1, ρ2 and ρ1 = ρ2, the condition becomes

0 < λc < 2λb

always satisfied due to the requirement for a bound state that λ−1
b < 2λ−1

c , appendix 4.4. But,
if ρ2 = 0, the condition becomes

λc = λb.

Instances with ρ1 = 0 or ρ2 = 0 are singular cases excluded by the lack of support of the
summation (36) on zero momenta. But, by continuity, these simple instances provide insight.
For ρ1 = 0 or ρ2 = 0,

Hmax = Hmin = HB

and there is no zero of HB unless every point with ρ1 = 0 or ρ2 = 0 is a zero. If ρ1 = 0, then

Hmax = Hmin =

√
λ−2
c + ρ22 − λ−1

c −
√
λ−2
b + ρ22 + λ−1

b

from (2), (15) and (26). Then, the monotonic increase of ω2 − λ−1
c and ωb(p2) − λ−1

b with
increasing reciprocal wavelengths provides that both Hmax and Hmin are negative for mb < m.
Both Hmax and Hmin are positive for mb > m. If mb = m, both Hmax and Hmin are zero for
either ρ1 = 0 or ρ2 = 0.
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For the magnitude squared of one momenta very small with respect to the other, taking
ρ1 ≫ ρ2, Taylor series expansion results in

Hmax =
√
λ−2
c + ρ21 +

√
λ−2
c + ρ22 −

√
λ−2
b + ρ21 +

ρ1ρ2√
λ−2
b +ρ21

+ λ−1
b − 2λ−1

c

Hmin =
√
λ−2
c + ρ21 +

√
λ−2
c + ρ22 −

√
λ−2
b + ρ21 −

ρ1ρ2√
λ−2
b +ρ21

+ λ−1
b − 2λ−1

c .

and then Hmax > 0 for a sufficienly large product ρ1ρ2. 0 > Hmin is also conditional and
requires that√

λ−2
c + ρ21 +

√
λ−2
c + ρ22 −

√
λ−2
b + ρ21 + λ−1

b − 2λ−1
c <

ρ1ρ2√
λ−2
b + ρ21

.

But again, for sufficiently large ρ1, ρ2, the leading order in the Taylor series expansions is

λ−1
b < 2λ−1

c

that is necessarily satisfied and the next terms in the Taylor series are negligible if ρ1, ρ2 are
sufficiently large ρ1, ρ2.

Another insight into the support of the summation in (32) is for equal magnitude momenta,
ρ1 = ρ2. These cases include p2 = −p1 of interest for the classical correspondence in the center
of momentum frame. In these instances,

Hmax = 2
√
λ−2
c + ρ21 − 2λ−1

c

Hmin = 2
√
λ−2
c + ρ21 − 2λ−1

c − 2
√

1
4λ

−2
b + ρ21 + λ−1

b .

and these points are always included in the summation in (32). Hmax > 0 follows from√
a2 + b2 > a for non-zero, positive real numbers, and 0 > Hmin follows from Hmin = 0 at

ρ1 = 0 and the derivative of the continuous Hmin with respect to ρ1,

dHmin

dρ1
=

2ρ1√
λ−2
c + ρ21

− 2ρ1√
1
4λ

−2
b + ρ21

,

is strictly negative for ρ1 > 0. The negativity of the derivative follows from the monotonicity
of
√
a2 + ρ2 in both a and ρ, and that λ−1

b < 2λ−1
c .

4.3 Zeros of Hmin and Hmax

It is established in appendix 4.2 that there are values ρ1, ρ2 that result inHmin = 0 orHmax = 0.
At these ρ1, ρ2, the continuous functions Hmin or Hmax transition from negative to positive
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values. The values of ρ1, ρ2 at the zeros of Hmin or Hmax form a curve that demarcates the
support of the summation (32). In this appendix, these zeros are evaluated.

From (26), Hmin = 0 is equivalent to√
λ−2
c + ρ21 +

√
λ−2
c + ρ22 =

√
λ−2
b + (ρ1 + ρ2)2 − λ−1

b + 2λ−1
c√

λ−2
c + (u+v)2

4 +

√
λ−2
c + (u−v)2

4 =
√
λ−2
b + u2 − λ−1

b + 2λ−1
c

with the substitutions

u = ρ1 + ρ2

v = ρ1 − ρ2.

Squaring,

2λ−2
c +

(u+v)2

4
+
(u−v)2

4
+2

√
λ−4
c +λ−2

c

(
(u+v)2

4 + (u−v)2
4

)
+ (u+v)2(u−v)2

16 =

(√
λ−2
b +u2+A

)2

2λ−2
c +

v2

2
+
u2

2
+2

√
λ−4
c + λ−2

c
2 (u2+v2)+ (u2−v2)2

16 =

(√
λ−2
b +u2+A

)2

with
0 < A := 2λ−1

c − λ−1
b < 2λ−1

c .

Reorganizing and squaring again results in a linear equation for v2.

2

√
λ−4
c + λ−2

c
2 (u2 + v2) + (u2−v2)2

16 =

(√
λ−2
b + u2 +A

)2

− 2λ−2
c − u2

2
− v2

2

4λ−4
c + 2λ−2

c (u2 + v2) +
(u2 − v2)2

4
=

((√
λ−2
b + u2 +A

)2

− 2λ−2
c − u2

2
− v2

2

)2

4λ−4
c + 2λ−2

c (u2 + v2) +
u4 − 2u2v2

4
=

((√
λ−2
b + u2 +A

)2

− 2λ−2
c − u2

2

)2

−

((√
λ−2
b + u2 +A

)2

− 2λ−2
c − u2

2

)
v2.

The linear equation for v2 that sets Hmin = 0 results from collecting like powers of v.{(√
λ−2
b + u2 +A

)2

+ u2

}
v2

=

((√
λ−2
b + u2 +A

)2

− 2λ−2
c − u2

2

)2

− 4λ−4
c − 2λ−2

c u2 − u4

4
.

(52)
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Then, there are two solutions, designated v = ±vo(u), to Hmin = 0. The roots of interest
have ρ1 > 0 and ρ2 > 0. If u > vo(u),

ρ1 = 1
2(u± vo(u))

ρ2 = 1
2(u∓ vo(u))

are the zeros of Hmin .
(52) results in values for v2 that are less than, equal, or exceed u2 as λb is varied with

respect to λc. With

B :=

(√
λ−2
b + u2 +A

)2

,

the value of λb that results in v
2 = u2 is verified from (52).

u2 = v2 =
B2 − (4λ−2

c + u2)B

B + u2

or

0 =
B2 − (4λ−2

c + u2)B − u2(B + u2)

B + u2
.

From B + u2 > 0, u2 = v2 if

0 = B2 − (4λ−2
c + 2u2)B − u4.

Substitution for B and A results in

B =

(√
λ−2
b + u2 + 2λ−1

c − λ−1
b

)2

= 2λ−2
c + u2 ±

√
(2λ−2

c + u2)2 + u4.

Only the plus sign provides B > 0, and λ−1
c = λ−1

b results in the identity(√
λ−2
c + u2 + λ−1

c

)2

= 2λ−2
c + u2 + 2λ−1

c

√
λ−2
c + u2. (53)

Then (53) and inspection of (52) result in

u2 > v2 if λ−2
c < λ−2

b < 2λ−2
c

u2 = v2 if λ−2
b = λ−2

c

u2 < v2 if 0 < λ−2
b < λ−2

c .

The zeros of Hmin follow if u2 > v2. u2 = v2 is a singular point with either ρ1 = 0 or ρ2 = 0.
In this instance, mb = m and for this single, scalar field case of present interest, the bound
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state is indiscernible from an elementary particle. This point is excluded by a lack of support
of the summation (36) on zero momenta. If u2 < v2, then either ρ1 < 0 or ρ2 < 0 and this is
equivalent to an exchange of Hmin with Hmax . That is, the zero corresponds to changing the
sign of the dot product p1 ·p2, or taking − cosϕ12 = cos(π−ϕ12) with ρ1, ρ2 > 0. These values
of ρ1, ρ2 are zeros of Hmax with Hmin < 0. Indeed, from (26) and with substitution of u, v for
ρ1, ρ2, Hmax = 0 is equivalent to√

λ−2
c +

(u+ v)2

4
+

√
λ−2
c +

(u− v)2

4
=
√
λ−2
b + v2 − λ−1

b + 2λ−1
c

that exchanges u and v in the development of the zeros of Hmin above. Finally, the zeros
evaluated in (52) are zeros of

Hmin if λ−2
c < λ−2

b < 2λ−2
c

Hmax if 0 < λ−2
b < λ−2

c .

4.4 Relativistic bound-state kinematics

In the single, finite mass elementary particle instance of present interest, a bound state com-
posed of N elementary particles is described by a center-of-momentum that behaves like a free
particle with a rest mass less than Nm, with a localized description for the internal degrees of
freedom. From the cluster decomposition property of VEV [10], the bound states and elemen-
tary particles have correspondences with classical bodies when the support of the descriptions
of the bound states or elementary particles are distantly space-like separated from the support
of other bodies. Without describing likelihoods nor the dynamics of state descriptions, the
rest masses of bound states are described by the classical correspondences from the results of
collisions of elementary particles with the bound states.

If the initial state is described by one freely propagating bound state described by its
center-of-momentum and one elementary particle, and the final state is described by some
greater number of elementary particles, then collision instances can be selected to evaluate
the rest mass of the bound state. With the bound state described by a rest mass mb, in the
center-of-momentum reference frame for the collision, the initial energy-momenta are

(ω1,p1) and (
√
λ−2
b + p2

1,−p1)

with λb = ℏ/(mbc), the reduced Compton wavelength (3) for mb, and ω1 from (2). The selected
final state has N +1 elementary particles that eventually escape to large space-like separations
with no excess energy. Then, the final energy-momenta are

(N + 1)(λ−1
c , 0, 0, 0).
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Conservation of energy provides the rest mass of a bound state of N elementary particles. Inter-
preting the bound state as consisting of N of the single type of neutral, finite mass elementary
particles, conservation of energy provides that√

λ−2
b + p2

1 + ω1 = (N + 1)λ−1
c

or

mb =

(
(N + 1)2m2 +m2 − 2(N + 1) m

ℏω1

c

) 1
2

.

Then
0 ≤ mb ≤ Nm

and the binding energy is designated as the rest mass energy difference of the N free particles
and the bound complex. The greater the required ω1 > m, the more deeply bound are the N
elementary particles. This scattering event exhibits no particle creations or annihilations.
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